更改

添加4,392字节 、 2020年11月5日 (四) 21:36
第470行: 第470行:  
建造大型量子计算机存在许多技术挑战。物理学家 David DiVincenzo 列出了实用量子计算机的下列要求:
 
建造大型量子计算机存在许多技术挑战。物理学家 David DiVincenzo 列出了实用量子计算机的下列要求:
   −
== Obstacles ==
+
== Obstacles 阻碍==
    
There are a number of technical challenges in building a large-scale quantum computer.<ref>{{cite journal |last=Dyakonov |first=Mikhail |url=https://spectrum.ieee.org/computing/hardware/the-case-against-quantum-computing |title=The Case Against Quantum Computing |journal=[[IEEE Spectrum]] |date=2018-11-15}}</ref> Physicist [[David P. DiVincenzo|David DiVincenzo]] has listed the following [[DiVincenzo's criteria|requirements]] for a practical quantum computer:<ref>{{cite journal| arxiv=quant-ph/0002077|title=The Physical Implementation of Quantum Computation|last=DiVincenzo |first=David P.|date=2000-04-13|doi=10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E|volume=48|issue=9–11|journal=Fortschritte der Physik|pages=771–783|bibcode=2000ForPh..48..771D}}</ref>
 
There are a number of technical challenges in building a large-scale quantum computer.<ref>{{cite journal |last=Dyakonov |first=Mikhail |url=https://spectrum.ieee.org/computing/hardware/the-case-against-quantum-computing |title=The Case Against Quantum Computing |journal=[[IEEE Spectrum]] |date=2018-11-15}}</ref> Physicist [[David P. DiVincenzo|David DiVincenzo]] has listed the following [[DiVincenzo's criteria|requirements]] for a practical quantum computer:<ref>{{cite journal| arxiv=quant-ph/0002077|title=The Physical Implementation of Quantum Computation|last=DiVincenzo |first=David P.|date=2000-04-13|doi=10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E|volume=48|issue=9–11|journal=Fortschritte der Physik|pages=771–783|bibcode=2000ForPh..48..771D}}</ref>
 +
 +
建造大型量子计算机面临许多技术挑战。物理学家[[David P.DiVincenzo | David DiVincenzo]]为一台实用的量子计算机列出了以下[[DiVincenzo的标准|要求]] :
    
* Scalable physically to increase the number of qubits
 
* Scalable physically to increase the number of qubits
 
+
*物理上可扩展以增加量子比特的数量
 
* Qubits that can be initialized to arbitrary values
 
* Qubits that can be initialized to arbitrary values
 
+
*可以初始化为任意值的量子位
 
* Quantum gates that are faster than [[decoherence]] time
 
* Quantum gates that are faster than [[decoherence]] time
 
+
*比[[退相干]]时间快的量子门
 
* Universal gate set
 
* Universal gate set
 +
*通用门组
    
Sourcing parts for quantum computers is also very difficult. Many quantum computers, like those constructed by Google and IBM, need Helium-3, a nuclear research byproduct, and special superconducting cables that are only made by the Japanese company Coax Co.
 
Sourcing parts for quantum computers is also very difficult. Many quantum computers, like those constructed by Google and IBM, need Helium-3, a nuclear research byproduct, and special superconducting cables that are only made by the Japanese company Coax Co.
第487行: 第490行:     
* Qubits that can be read easily
 
* Qubits that can be read easily
 
+
*易于读取的量子位
      第496行: 第499行:  
Sourcing parts for quantum computers is also very difficult. Many quantum computers, like those constructed by [[Google]] and [[IBM]], need [[Helium-3]], a [[Nuclear physics|nuclear]] research byproduct, and special [[superconducting]] cables that are only made by the Japanese company Coax Co.<ref>{{cite news |last1=Giles |first1=Martin |title=We'd have more quantum computers if it weren't so hard to find the damn cables |url=https://www.technologyreview.com/s/612760/quantum-computers-component-shortage/ |publisher=MIT Technology Review |date=17 January 2019}}</ref>
 
Sourcing parts for quantum computers is also very difficult. Many quantum computers, like those constructed by [[Google]] and [[IBM]], need [[Helium-3]], a [[Nuclear physics|nuclear]] research byproduct, and special [[superconducting]] cables that are only made by the Japanese company Coax Co.<ref>{{cite news |last1=Giles |first1=Martin |title=We'd have more quantum computers if it weren't so hard to find the damn cables |url=https://www.technologyreview.com/s/612760/quantum-computers-component-shortage/ |publisher=MIT Technology Review |date=17 January 2019}}</ref>
    +
量子计算机的零件采购也非常困难。许多量子计算机,比如由[[Google]]和[[IBM]]建造的量子计算机,需要[[Hemien-3]],[[Nuclear physics | Nuclear]]研究副产品,以及只由日本Coax Co.公司制造的[[超导]]电缆。
       
The control of multi qubit systems requires the generation and coordination of a large number of electrical signals with tight and deterministic timing resolution. This had led to the development of [[quantum controllers]] which enable interfacing the qubit.  Scaling these systems to support a growing number of qubits is an additional challenge in the scaling of quantum computers.{{Citation needed|date=August 2020}}   
 
The control of multi qubit systems requires the generation and coordination of a large number of electrical signals with tight and deterministic timing resolution. This had led to the development of [[quantum controllers]] which enable interfacing the qubit.  Scaling these systems to support a growing number of qubits is an additional challenge in the scaling of quantum computers.{{Citation needed|date=August 2020}}   
    +
多量子比特系统的控制需要产生和协调大量的电信号,并且具有严格和确定的时序分辨率。这导致了[[量子控制器]]的发展,这种控制器可以连接量子比特。扩展这些系统以支持数量不断增长的量子比特是量子计算机扩展的另一个挑战。{{需要引文|日期=2020年8月}}
   −
 
+
=== Quantum decoherence 量子退相干===
=== Quantum decoherence ===
      
One of the greatest challenges involved with constructing quantum computers is controlling or removing quantum decoherence. This usually means isolating the system from its environment as interactions with the external world cause the system to decohere. However, other sources of decoherence also exist. Examples include the quantum gates, and the lattice vibrations and background thermonuclear spin of the physical system used to implement the qubits. Decoherence is irreversible, as it is effectively non-unitary, and is usually something that should be highly controlled, if not avoided. Decoherence times for candidate systems in particular, the transverse relaxation time T<sub>2</sub> (for NMR and MRI technology, also called the dephasing time), typically range between nanoseconds and seconds at low temperature. Currently, some quantum computers require their qubits to be cooled to 20 millikelvins in order to prevent significant decoherence. A 2020 study argues that ionizing radiation such as cosmic rays can nevertheless cause certain systems to decohere within millisections.
 
One of the greatest challenges involved with constructing quantum computers is controlling or removing quantum decoherence. This usually means isolating the system from its environment as interactions with the external world cause the system to decohere. However, other sources of decoherence also exist. Examples include the quantum gates, and the lattice vibrations and background thermonuclear spin of the physical system used to implement the qubits. Decoherence is irreversible, as it is effectively non-unitary, and is usually something that should be highly controlled, if not avoided. Decoherence times for candidate systems in particular, the transverse relaxation time T<sub>2</sub> (for NMR and MRI technology, also called the dephasing time), typically range between nanoseconds and seconds at low temperature. Currently, some quantum computers require their qubits to be cooled to 20 millikelvins in order to prevent significant decoherence. A 2020 study argues that ionizing radiation such as cosmic rays can nevertheless cause certain systems to decohere within millisections.
   −
构建量子计算机的最大挑战之一是控制或移除量子退相干。这通常意味着将系统与其环境隔离开来,因为与外部世界的相互作用会导致系统解码。然而,退相干的其他来源也存在。例子包括量子门、晶格振动和用于实现量子位的物理系统的背景热核自旋。退相干是不可逆的,因为它实际上是非幺正的,而且通常应该受到高度控制,如果不能避免的话。特别是候选系统的退相干时间,横向弛豫时间 t < sub > 2 </sub > (对于 NMR 和 MRI 技术,也称为退相时间) ,通常在低温下纳秒到秒之间。目前,一些量子计算机需要将它们的量子比特冷却到20毫升以防止明显的退相干。2020年的一项研究认为,像宇宙射线这样的电离辐射可以引起某些系统在毫秒内退相干。
+
构建量子计算机的最大挑战之一是控制或移除'''<font color="#ff8000"> 量子退相干Quantum decoherence</font>'''。这通常意味着将系统与其环境隔离,因为与外部世界的交互会导致系统去中心化。然而,也存在其他的消相干源。例如量子门,晶格振动和用于实现量子比特的物理系统的背景热核自旋。退相干是不可逆的,因为它实际上是非幺正的,如果不能避免的话,通常是应该高度控制的。对于候选系统,尤其是横向弛豫时间T<sub>2</sub>(对于核磁共振和核磁共振技术,也称为去相时间),在低温下通常在纳秒和秒之间。目前,一些量子计算机要求将量子比特冷却到20毫开尔文,以防止严重的退相干。2020年的一项研究认为,宇宙射线等电离辐射仍然可以导致某些系统在毫秒范围内发生衰变。
 
   
{{Main|Quantum decoherence}}
 
{{Main|Quantum decoherence}}
   第518行: 第521行:  
One of the greatest challenges involved with constructing quantum computers is controlling or removing [[quantum decoherence]]. This usually means isolating the system from its environment as interactions with the external world cause the system to decohere. However, other sources of decoherence also exist. Examples include the quantum gates, and the lattice vibrations and background thermonuclear spin of the physical system used to implement the qubits. Decoherence is irreversible, as it is effectively non-unitary, and is usually something that should be highly controlled, if not avoided. Decoherence times for candidate systems in particular, the transverse relaxation time ''T''<sub>2</sub> (for [[Nuclear magnetic resonance|NMR]] and [[MRI]] technology, also called the ''dephasing time''), typically range between nanoseconds and seconds at low temperature.<ref name="DiVincenzo 1995">{{cite journal |last=DiVincenzo |first=David P. |title=Quantum Computation |journal=Science |year=1995 |volume=270 |issue=5234 |pages=255–261 |doi= 10.1126/science.270.5234.255 |bibcode = 1995Sci...270..255D |citeseerx=10.1.1.242.2165 |s2cid=220110562 }} {{subscription required}}</ref> Currently, some quantum computers require their qubits to be cooled to 20 millikelvins in order to prevent significant decoherence.<ref>{{cite journal|last1=Jones|first1=Nicola|title=Computing: The quantum company|journal=Nature|date=19 June 2013|volume=498|issue=7454|pages=286–288|doi=10.1038/498286a|pmid=23783610|bibcode=2013Natur.498..286J|doi-access=free}}</ref> A 2020 study argues that [[ionizing radiation]] such as [[cosmic rays]] can nevertheless cause certain systems to decohere within millisections.<ref>{{cite journal |last1=Vepsäläinen |first1=Antti P. |last2=Karamlou |first2=Amir H. |last3=Orrell |first3=John L. |last4=Dogra |first4=Akshunna S. |last5=Loer |first5=Ben |last6=Vasconcelos |first6=Francisca |last7=Kim |first7=David K. |last8=Melville |first8=Alexander J. |last9=Niedzielski |first9=Bethany M. |last10=Yoder |first10=Jonilyn L. |last11=Gustavsson |first11=Simon |last12=Formaggio |first12=Joseph A. |last13=VanDevender |first13=Brent A. |last14=Oliver |first14=William D. |display-authors=5 |title=Impact of ionizing radiation on superconducting qubit coherence |journal=Nature |date=August 2020 |volume=584 |issue=7822 |pages=551–556 |doi=10.1038/s41586-020-2619-8 |pmid=32848227 |url=https://www.nature.com/articles/s41586-020-2619-8 |language=en |issn=1476-4687|arxiv=2001.09190 |s2cid=210920566 }}</ref>
 
One of the greatest challenges involved with constructing quantum computers is controlling or removing [[quantum decoherence]]. This usually means isolating the system from its environment as interactions with the external world cause the system to decohere. However, other sources of decoherence also exist. Examples include the quantum gates, and the lattice vibrations and background thermonuclear spin of the physical system used to implement the qubits. Decoherence is irreversible, as it is effectively non-unitary, and is usually something that should be highly controlled, if not avoided. Decoherence times for candidate systems in particular, the transverse relaxation time ''T''<sub>2</sub> (for [[Nuclear magnetic resonance|NMR]] and [[MRI]] technology, also called the ''dephasing time''), typically range between nanoseconds and seconds at low temperature.<ref name="DiVincenzo 1995">{{cite journal |last=DiVincenzo |first=David P. |title=Quantum Computation |journal=Science |year=1995 |volume=270 |issue=5234 |pages=255–261 |doi= 10.1126/science.270.5234.255 |bibcode = 1995Sci...270..255D |citeseerx=10.1.1.242.2165 |s2cid=220110562 }} {{subscription required}}</ref> Currently, some quantum computers require their qubits to be cooled to 20 millikelvins in order to prevent significant decoherence.<ref>{{cite journal|last1=Jones|first1=Nicola|title=Computing: The quantum company|journal=Nature|date=19 June 2013|volume=498|issue=7454|pages=286–288|doi=10.1038/498286a|pmid=23783610|bibcode=2013Natur.498..286J|doi-access=free}}</ref> A 2020 study argues that [[ionizing radiation]] such as [[cosmic rays]] can nevertheless cause certain systems to decohere within millisections.<ref>{{cite journal |last1=Vepsäläinen |first1=Antti P. |last2=Karamlou |first2=Amir H. |last3=Orrell |first3=John L. |last4=Dogra |first4=Akshunna S. |last5=Loer |first5=Ben |last6=Vasconcelos |first6=Francisca |last7=Kim |first7=David K. |last8=Melville |first8=Alexander J. |last9=Niedzielski |first9=Bethany M. |last10=Yoder |first10=Jonilyn L. |last11=Gustavsson |first11=Simon |last12=Formaggio |first12=Joseph A. |last13=VanDevender |first13=Brent A. |last14=Oliver |first14=William D. |display-authors=5 |title=Impact of ionizing radiation on superconducting qubit coherence |journal=Nature |date=August 2020 |volume=584 |issue=7822 |pages=551–556 |doi=10.1038/s41586-020-2619-8 |pmid=32848227 |url=https://www.nature.com/articles/s41586-020-2619-8 |language=en |issn=1476-4687|arxiv=2001.09190 |s2cid=210920566 }}</ref>
   −
 
+
建造量子计算机的最大挑战之一是控制或消除[[量子退相干]]。这通常意味着将系统与其环境隔离,因为与外部世界的交互会导致系统去中心化。然而,也存在其他的消相干源。例如量子门,晶格振动和用于实现量子比特的物理系统的背景热核自旋。退相干是不可逆的,因为它实际上是非幺正的,如果不能避免的话,通常是应该高度控制的。候选系统的退相干时间,特别是横向弛豫时间“T”<sub>2</sub>(对于[[核磁共振| NMR]]和[[MRI]]技术,也称为“去相位时间”),在低温下通常在纳秒到秒之间。.<ref name="DiVincenzo 1995">{{cite journal |last=DiVincenzo |first=David P. |title=Quantum Computation |journal=Science |year=1995 |volume=270 |issue=5234 |pages=255–261 |doi= 10.1126/science.270.5234.255 |bibcode = 1995Sci...270..255D |citeseerx=10.1.1.242.2165 |s2cid=220110562 }} {{subscription required}}</ref>目前,一些量子计算机要求将量子比特冷却到20毫开尔文,以防止严重的退相干。<ref>{{cite journal|last1=Jones|first1=Nicola|title=Computing: The quantum company|journal=Nature|date=19 June 2013|volume=498|issue=7454|pages=286–288|doi=10.1038/498286a|pmid=23783610|bibcode=2013Natur.498..286J|doi-access=free}}</ref>2020年的一项研究认为,尽管如此,诸如[宇宙射线]这样的[[电离辐射]]仍能导致某些系统在毫秒范围内退凝。<ref>{{cite journal |last1=Vepsäläinen |first1=Antti P. |last2=Karamlou |first2=Amir H. |last3=Orrell |first3=John L. |last4=Dogra |first4=Akshunna S. |last5=Loer |first5=Ben |last6=Vasconcelos |first6=Francisca |last7=Kim |first7=David K. |last8=Melville |first8=Alexander J. |last9=Niedzielski |first9=Bethany M. |last10=Yoder |first10=Jonilyn L. |last11=Gustavsson |first11=Simon |last12=Formaggio |first12=Joseph A. |last13=VanDevender |first13=Brent A. |last14=Oliver |first14=William D. |display-authors=5 |title=Impact of ionizing radiation on superconducting qubit coherence |journal=Nature |date=August 2020 |volume=584 |issue=7822 |pages=551–556 |doi=10.1038/s41586-020-2619-8 |pmid=32848227 |url=https://www.nature.com/articles/s41586-020-2619-8 |language=en |issn=1476-4687|arxiv=2001.09190 |s2cid=210920566 }}</ref>
    
These issues are more difficult for optical approaches as the timescales are orders of magnitude shorter and an often-cited approach to overcoming them is optical pulse shaping. Error rates are typically proportional to the ratio of operating time to decoherence time, hence any operation must be completed much more quickly than the decoherence time.
 
These issues are more difficult for optical approaches as the timescales are orders of magnitude shorter and an often-cited approach to overcoming them is optical pulse shaping. Error rates are typically proportional to the ratio of operating time to decoherence time, hence any operation must be completed much more quickly than the decoherence time.
第530行: 第533行:  
As described in the Quantum threshold theorem, if the error rate is small enough, it is thought to be possible to use quantum error correction to suppress errors and decoherence. This allows the total calculation time to be longer than the decoherence time if the error correction scheme can correct errors faster than decoherence introduces them. An often cited figure for the required error rate in each gate for fault-tolerant computation is 10<sup>−3</sup>, assuming the noise is depolarizing.
 
As described in the Quantum threshold theorem, if the error rate is small enough, it is thought to be possible to use quantum error correction to suppress errors and decoherence. This allows the total calculation time to be longer than the decoherence time if the error correction scheme can correct errors faster than decoherence introduces them. An often cited figure for the required error rate in each gate for fault-tolerant computation is 10<sup>−3</sup>, assuming the noise is depolarizing.
   −
正如量子阈值定理所描述的那样,如果误差率足够小,人们认为可以利用量子误差修正来抑制误差和退相干。这使得总计算时间比消相干时间更长,如果纠错方案能够比消相干引入的误差更快地纠正误差。假设噪声是去极化的,容错计算中每个门所需的错误率经常被引用的数字是10 < sup >-3 </sup > 。
+
正如量子阈值定理所描述的那样,如果误差率足够小,人们认为可以利用量子误差修正来抑制误差和退相干。这使得总计算时间比消相干时间更长,如果纠错方案能够比消相干引入的误差更快地纠正误差。假设噪声是去极化的,容错计算中每个门所需的错误率经常被引用的数字是10<sup>−3</sup>。
    
These issues are more difficult for optical approaches as the timescales are orders of magnitude shorter and an often-cited approach to overcoming them is optical [[pulse shaping]]. Error rates are typically proportional to the ratio of operating time to decoherence time, hence any operation must be completed much more quickly than the decoherence time.
 
These issues are more difficult for optical approaches as the timescales are orders of magnitude shorter and an often-cited approach to overcoming them is optical [[pulse shaping]]. Error rates are typically proportional to the ratio of operating time to decoherence time, hence any operation must be completed much more quickly than the decoherence time.
    +
这些问题对于光学方法来说更为困难,因为时间尺度短一个数量级,而克服这些问题的常用方法是光学[[脉冲成形]]。错误率通常与操作时间与退相干时间的比率成正比,因此任何操作都必须比退相干时间快得多。
    +
Meeting this scalability condition is possible for a wide range of systems. However, the use of error correction brings with it the cost of a greatly increased number of required qubits. The number required to factor integers using Shor's algorithm is still polynomial, and thought to be between L and L<sup>2</sup>, where L is the number of qubits in the number to be factored; error correction algorithms would inflate this figure by an additional factor of L. For a 1000-bit number, this implies a need for about 10<sup>4</sup> bits without error correction. With error correction, the figure would rise to about 10<sup>7</sup> bits. Computation time is about L<sup>2</sup> or about 10<sup>7</sup> steps and at 1&nbsp;MHz, about 10 seconds.
   −
Meeting this scalability condition is possible for a wide range of systems. However, the use of error correction brings with it the cost of a greatly increased number of required qubits. The number required to factor integers using Shor's algorithm is still polynomial, and thought to be between L and L<sup>2</sup>, where L is the number of qubits in the number to be factored; error correction algorithms would inflate this figure by an additional factor of L. For a 1000-bit number, this implies a need for about 10<sup>4</sup> bits without error correction. With error correction, the figure would rise to about 10<sup>7</sup> bits. Computation time is about L<sup>2</sup> or about 10<sup>7</sup> steps and at 1&nbsp;MHz, about 10 seconds.
+
满足这种可伸缩性条件对于各种系统都是可能的。然而,纠错的使用带来了大量增加所需量子比特的代价。使用Shor算法对整数进行因子运算所需的数量仍然是多项式的,并且被认为在L和L<sup>2</sup>之间,其中L是要被分解的数量中的量子位数;纠错算法将使这个数字膨胀一个额外的系数L。对于1000位的数字,这意味着需要大约10<sup>4</sup>位没有纠错。通过纠错,这个数字将上升到大约10<sup>7</sup>位。计算时间约为L<sup>2</sup> 或约 10<sup>7</sup>步,在1兆赫时,大约10秒。
   −
对于很多系统来说,满足这种可伸缩性条件是可能的。然而,错误校正的使用带来了大大增加所需量子位数的成本。使用 Shor 算法对整数进行因子分解所需要的数字仍然是多项式的,并且被认为介于 l 和 l < sup > 2 </sup > 之间,其中 l 是要分解的数字中的量子位数; 错误校正算法将使这个数字增加一个额外的因子 l,对于一个1000位的数字,这意味着需要大约10 < > 4 </sup > 位而不进行错误校正。经过纠错,这个数字将上升到大约10 < sup > 7 </sup > 位。计算时间是大约 l < sup > 2 </sup > 或大约10 < sup > 7 </sup > 步骤,在1mhz,大约10秒。
      
As described in the [[Quantum threshold theorem]], if the error rate is small enough, it is thought to be possible to use quantum error correction to suppress errors and decoherence. This allows the total calculation time to be longer than the decoherence time if the error correction scheme can correct errors faster than decoherence introduces them. An often cited figure for the required error rate in each gate for fault-tolerant computation is 10<sup>−3</sup>, assuming the noise is depolarizing.
 
As described in the [[Quantum threshold theorem]], if the error rate is small enough, it is thought to be possible to use quantum error correction to suppress errors and decoherence. This allows the total calculation time to be longer than the decoherence time if the error correction scheme can correct errors faster than decoherence introduces them. An often cited figure for the required error rate in each gate for fault-tolerant computation is 10<sup>−3</sup>, assuming the noise is depolarizing.
   −
 
+
如[[量子阈值定理]]所述,如果错误率足够小,则可以使用量子纠错来抑制误差和退相干。如果纠错方案能够比退相干引入的错误更快地纠正错误,则允许总计算时间比退相干时间长。假设噪声是去极化的,则容错计算中每个门所需的错误率经常引用的数字是10<sup>-3</sup>。
    
A very different approach to the stability-decoherence problem is to create a topological quantum computer with anyons, quasi-particles used as threads and relying on braid theory to form stable logic gates.
 
A very different approach to the stability-decoherence problem is to create a topological quantum computer with anyons, quasi-particles used as threads and relying on braid theory to form stable logic gates.
第557行: 第561行:     
A very different approach to the stability-decoherence problem is to create a [[topological quantum computer]] with [[anyon]]s, [[quasi-particle]]s used as threads and relying on [[braid theory]] to form stable logic gates.<ref>{{cite journal
 
A very different approach to the stability-decoherence problem is to create a [[topological quantum computer]] with [[anyon]]s, [[quasi-particle]]s used as threads and relying on [[braid theory]] to form stable logic gates.<ref>{{cite journal
 +
 +
稳定退相干问题的一个非常不同的方法是用[[任意子]]s,[[准粒子]]s作为线程,依靠[[辫子理论]]来形成稳定的逻辑门
    
"So the number of continuous parameters describing the state of such a useful quantum computer at any given moment must be... about 10<sup>300</sup>... Could we ever learn to control the more than 10<sup>300</sup> continuously variable parameters defining the quantum state of such a system? My answer is simple. No, never."
 
"So the number of continuous parameters describing the state of such a useful quantum computer at any given moment must be... about 10<sup>300</sup>... Could we ever learn to control the more than 10<sup>300</sup> continuously variable parameters defining the quantum state of such a system? My answer is simple. No, never."
   −
“因此,描述这样一个有用的量子计算机在任何给定时刻的状态的连续参数的数量必须是... ... 大约10 < sup > 300 </sup > ... ... 我们能否学会控制定义这样一个系统的量子态的超过10 < sup > 300 </sup > 连续可变参数?我的答案很简单。不,永远不会。”
+
“因此,描述这样一个有用的量子计算机在任何给定时刻的状态的连续参数的数量必须是... ... 大约10<sup>300</sup> ... ... 我们能否学会控制定义这样一个系统的量子态的超过10<sup>300</sup> 连续可变参数?我的答案很简单。不,永远不会。”
    
  | last1 = Freedman | first1 = Michael H. | author1-link = Michael Freedman
 
  | last1 = Freedman | first1 = Michael H. | author1-link = Michael Freedman
第596行: 第602行:  
For physically implementing a quantum computer, many different candidates are being pursued, among them (distinguished by the physical system used to realize the qubits):
 
For physically implementing a quantum computer, many different candidates are being pursued, among them (distinguished by the physical system used to realize the qubits):
   −
为了实现量子计算机的物理实现,许多不同的候选者正在被追求,其中包括(区别于用于实现量子比特的物理系统) :
+
对于物理实现量子计算机,人们正在寻找许多不同的候选方案,其中包括(以实现量子比特的物理系统为区别):
    
  | year = 2003}}</ref><ref>{{cite journal |last=Monroe |first=Don |url=https://www.newscientist.com/channel/fundamentals/mg20026761.700-anyons-the-breakthrough-quantum-computing-needs.html |title=Anyons: The breakthrough quantum computing needs? |journal=[[New Scientist]] |date=2008-10-01}}</ref>
 
  | year = 2003}}</ref><ref>{{cite journal |last=Monroe |first=Don |url=https://www.newscientist.com/channel/fundamentals/mg20026761.700-anyons-the-breakthrough-quantum-computing-needs.html |title=Anyons: The breakthrough quantum computing needs? |journal=[[New Scientist]] |date=2008-10-01}}</ref>
第603行: 第609行:     
Physicist [[Mikhail Dyakonov]] has expressed skepticism of quantum computing as follows:
 
Physicist [[Mikhail Dyakonov]] has expressed skepticism of quantum computing as follows:
 +
 +
物理学家[[Mikhail Dyakonov]]对量子计算表示了以下怀疑:
    
:"So the number of continuous parameters describing the state of such a useful quantum computer at any given moment must be... about 10<sup>300</sup>... Could we ever learn to control the more than 10<sup>300</sup> continuously variable parameters defining the quantum state of such a system? My answer is simple. ''No, never.''"<ref>{{cite web |last1=Dyakonov |first1=Mikhail |title=The Case Against Quantum Computing |url=https://spectrum.ieee.org/computing/hardware/the-case-against-quantum-computing |website=IEEE Spectrum |accessdate=3 December 2019}}</ref><ref>{{cite book |last1=Dyakonov |first1=Mikhail |title=Will We Ever Have a Quantum Computer? |date=24 March 2020 |url=https://www.springer.com/gp/book/9783030420185 |publisher=Springer |isbn=9783030420185 |accessdate=22 May 2020}}{{page needed|date=May 2020}}</ref>
 
:"So the number of continuous parameters describing the state of such a useful quantum computer at any given moment must be... about 10<sup>300</sup>... Could we ever learn to control the more than 10<sup>300</sup> continuously variable parameters defining the quantum state of such a system? My answer is simple. ''No, never.''"<ref>{{cite web |last1=Dyakonov |first1=Mikhail |title=The Case Against Quantum Computing |url=https://spectrum.ieee.org/computing/hardware/the-case-against-quantum-computing |website=IEEE Spectrum |accessdate=3 December 2019}}</ref><ref>{{cite book |last1=Dyakonov |first1=Mikhail |title=Will We Ever Have a Quantum Computer? |date=24 March 2020 |url=https://www.springer.com/gp/book/9783030420185 |publisher=Springer |isbn=9783030420185 |accessdate=22 May 2020}}{{page needed|date=May 2020}}</ref>
   −
 
+
:“因此,描述这种有用的量子计算机在任何给定时刻的状态的连续参数的数量必须是。。。大约10<sup>300</sup>... 我们能不能学会控制定义这样一个系统量子态的超过10<sup>300</sup>连续可变的参数?我的回答很简单“不,从来没有”。
    
== Developments ==
 
== Developments ==
561

个编辑