| Let be a graph. A finite walk is a sequence of edges for which there is a sequence of vertices such that ϕ(e<sub>i</sub>) = {v<sub>i</sub>, v<sub>i + 1</sub>} for . is the vertex sequence of the walk. This walk is closed if v<sub>1</sub> = v<sub>n</sub>, and open else. An infinite walk is a sequence of edges of the same type described here, but with no first or last vertex, and a semi-infinite walk (or ray) has a first vertex but no last vertex. | | Let be a graph. A finite walk is a sequence of edges for which there is a sequence of vertices such that ϕ(e<sub>i</sub>) = {v<sub>i</sub>, v<sub>i + 1</sub>} for . is the vertex sequence of the walk. This walk is closed if v<sub>1</sub> = v<sub>n</sub>, and open else. An infinite walk is a sequence of edges of the same type described here, but with no first or last vertex, and a semi-infinite walk (or ray) has a first vertex but no last vertex. |
− | 以一个图为例{{nowrap|1=''G'' = (''V'', ''E'', ''ϕ'')}} 。有限步道是一系列的边{{nowrap|(''e''<sub>1</sub>, ''e''<sub>2</sub>, …, ''e''<sub>''n'' − 1</sub>)}},其顶点序列{{nowrap|(''v''<sub>1</sub>, ''v''<sub>2</sub>, …, ''v''<sub>''n''</sub>)}}。 {{nowrap begin}}''ϕ''(''e''<sub>''i''</sub>) = {''v''<sub>''i''</sub>, ''v''<sub>''i'' + 1</sub>}{{nowrap end}}对于{{nowrap|1=''i'' = 1, 2, …, ''n'' − 1}}. {{nowrap|(''v''<sub>1</sub>, ''v''<sub>2</sub>, …, ''v''<sub>''n''</sub>)}} 是移动的顶点序列。如果 {{nowrap begin}}''v''<sub>1</sub> = ''v''<sub>''n''</sub>{{nowrap end}} ,则此步道封闭,反之则开放。一个无限步道是由一系列的边组成的,它们的类型与这里描述的相同,但没有起点或终点,而一个半无限步道(或光线)有起点但是没有终点。 | + | 以一个图为例{{nowrap|1=''G'' = (''V'', ''E'', ''ϕ'')}} 。有限步道是一系列的边{{nowrap|(''e''<sub>1</sub>, ''e''<sub>2</sub>, …, ''e''<sub>''n'' − 1</sub>)}},其顶点序列{{nowrap|(''v''<sub>1</sub>, ''v''<sub>2</sub>, …, ''v''<sub>''n''</sub>)}}。 {{nowrap begin}}''ϕ''(''e''<sub>''i''</sub>) = {''v''<sub>''i''</sub>, ''v''<sub>''i'' + 1</sub>}{{nowrap end}}对于{{nowrap|1=''i'' = 1, 2, …, ''n'' − 1}}. {{nowrap|(''v''<sub>1</sub>, ''v''<sub>2</sub>, …, ''v''<sub>''n''</sub>)}} 是移动的顶点序列。如果 {{nowrap begin}}''v''<sub>1</sub> = ''v''<sub>''n''</sub>{{nowrap end}} ,则此步道封闭,反之则开放。一个无限步道是由一系列边组成的,它们的类型与这里描述的相同,但没有起点或终点,而一个半无限步道(或光线)则有起点但是没有终点。 |
| If is a finite walk with vertex sequence then w is said to be a walk from v<sub>1</sub> to v<sub>n</sub>. Similarly for a trail or a path. If there is a finite walk between two distinct vertices then there is also a finite trail and a finite path between them. | | If is a finite walk with vertex sequence then w is said to be a walk from v<sub>1</sub> to v<sub>n</sub>. Similarly for a trail or a path. If there is a finite walk between two distinct vertices then there is also a finite trail and a finite path between them. |
− | 如果 {{nowrap|1=''w'' = (''e''<sub>1</sub>, ''e''<sub>2</sub>, …, ''e''<sub>''n'' − 1</sub>)}}是有顶点序列 {{nowrap|(''v''<sub>1</sub>, ''v''<sub>2</sub>, …, ''v''<sub>''n''</sub>)}}的有限步道,那么 w 就是从 ''v''<sub>1</sub> ''to'' ''v''<sub>''n''</sub>的步行。同样,对于一条轨迹或者一条路径也是如此。如果在两个不同的顶点之间有一个有限步道,那么在它们之间也有一个有限的轨迹和一个有限的路径。 | + | 如果 {{nowrap|1=''w'' = (''e''<sub>1</sub>, ''e''<sub>2</sub>, …, ''e''<sub>''n'' − 1</sub>)}}是有顶点的序列 {{nowrap|(''v''<sub>1</sub>, ''v''<sub>2</sub>, …, ''v''<sub>''n''</sub>)}},那么 w 就是从 ''v''<sub>1</sub> ''到'' ''v''<sub>''n''</sub>的有限步道。同样,对于一条轨迹或者一条路径也是如此。如果两个不同的顶点之间有一个有限步道,那么在它们之间也有一条有限的轨迹和一条有限的路径。 |