更改

删除4字节 、 2020年11月19日 (四) 02:20
第231行: 第231行:  
If we look at the incidence matrix, we see that the sum of each column is equal to 2. This is because each edge has a vertex connected to each end.
 
If we look at the incidence matrix, we see that the sum of each column is equal to 2. This is because each edge has a vertex connected to each end.
   −
观察关联矩阵,我们就会发现,每一列的和总是等于2的。这是因为每条边都有一个顶点连接到每个端点。
+
观察关联矩阵,我们就会发现,因为每条边都有一个顶点连接到每个端点,所以每一列的和总是等于2。
      第239行: 第239行:  
The incidence matrix of a directed graph is a  matrix B where n and m are the number of vertices and edges respectively, such that  if the edge e<sub>j</sub> leaves vertex v<sub>i</sub>, 1 if it enters vertex v<sub>i</sub> and 0 otherwise (many authors use the opposite sign convention).
 
The incidence matrix of a directed graph is a  matrix B where n and m are the number of vertices and edges respectively, such that  if the edge e<sub>j</sub> leaves vertex v<sub>i</sub>, 1 if it enters vertex v<sub>i</sub> and 0 otherwise (many authors use the opposite sign convention).
   −
'''<font color="#32CD32">有向图的关联矩阵是一个矩阵''B'',其中 ''n'' 和 ''m'' 分别是顶点和边的数目,这样如果边 e<sub>j</sub> 离开顶点 v<sub>i</sub>,为1,如果它进入顶点 v<sub>i</sub> ,为0(许多作者使用相反的符号约定)。</font>The incidence matrix of a directed graph is a  matrix B where n and m are the number of vertices and edges respectively, such that  if the edge e<sub>j</sub> leaves vertex v<sub>i</sub>, 1 if it enters vertex v<sub>i</sub> and 0 otherwise (many authors use the opposite sign convention).
+
'''<font color="#32CD32">有向图的关联矩阵是一个矩阵''B'',其中 ''n'' 和 ''m'' 分别是顶点和边的数目,这样当边 e<sub>j</sub> 离开顶点 v<sub>i</sub>,时为1,当它进入顶点 v<sub>i</sub> ,时为0(许多作者使用相反的符号约定)。</font>The incidence matrix of a directed graph is a  matrix B where n and m are the number of vertices and edges respectively, such that  if the edge e<sub>j</sub> leaves vertex v<sub>i</sub>, 1 if it enters vertex v<sub>i</sub> and 0 otherwise (many authors use the opposite sign convention).
      第290行: 第290行:  
The integral cycle space of a graph is equal to the null space of its oriented incidence matrix, viewed as a matrix over the integers or real or complex numbers. The binary cycle space is the null space of its oriented or unoriented incidence matrix, viewed as a matrix over the two-element field.
 
The integral cycle space of a graph is equal to the null space of its oriented incidence matrix, viewed as a matrix over the integers or real or complex numbers. The binary cycle space is the null space of its oriented or unoriented incidence matrix, viewed as a matrix over the two-element field.
   −
图的'''<font color="#ff8000">圈空间 Cycle Space</font>'''等j价于其有向关联矩阵的零空间,可以看作是整数或实数或复数上的矩阵。二元循环空间是有向或无向关联矩阵的零空间,也可以看作是二元场上的矩阵。
+
图的'''<font color="#ff8000">圈空间 Cycle Space</font>'''等价于其有向关联矩阵的零空间,可以看作是整数或实数或复数上的矩阵。二元循环空间是有向或无向关联矩阵的零空间,也可以看作是二元域上的矩阵。
    
==Signed and bidirected graphs 有符号双向图 ==
 
==Signed and bidirected graphs 有符号双向图 ==
526

个编辑