更改

添加172字节 、 2020年11月22日 (日) 23:18
无编辑摘要
第196行: 第196行:  
Fractional Pareto optimality is a strengthening of Pareto-optimality in the context of fair item allocation. An allocation of indivisible items is fractionally Pareto-optimal (fPO) if it is not Pareto-dominated even by an allocation in which some items are split between agents. This is in contrast to standard Pareto-optimality, which only considers domination by feasible (discrete) allocations.
 
Fractional Pareto optimality is a strengthening of Pareto-optimality in the context of fair item allocation. An allocation of indivisible items is fractionally Pareto-optimal (fPO) if it is not Pareto-dominated even by an allocation in which some items are split between agents. This is in contrast to standard Pareto-optimality, which only considers domination by feasible (discrete) allocations.
   −
部分帕累托最优是在物品公平分配的背景下对帕累托最优的一个加强。 即使是在一个分配过程中,一些物品在主体之间被分配,如果一个不可分割的物品的分配不是受帕累托支配的,那么它不是部分帕累托最优(fPO)。这与标准的帕累托最优相反,因为它只考虑可行(离散)分配的控制。
+
'''<font color="#ff8000">部分帕累托最优(Fractional Pareto optimality)</font>'''是在物品公平分配的背景下对帕累托最优的一个加强。 即使是在一个分配过程中,一些物品在主体之间被分配,如果一个不可分割的物品的分配不是受帕累托支配的,那么它不是部分帕累托最优(fPO)。这与标准的帕累托最优相反,因为它只考虑可行(离散)分配的控制。
      第290行: 第290行:  
For a given system, the Pareto frontier or Pareto set is the set of parameterizations (allocations) that are all Pareto efficient. Finding Pareto frontiers is particularly useful in engineering. By yielding all of the potentially optimal solutions, a designer can make focused tradeoffs within this constrained set of parameters, rather than needing to consider the full ranges of parameters.
 
For a given system, the Pareto frontier or Pareto set is the set of parameterizations (allocations) that are all Pareto efficient. Finding Pareto frontiers is particularly useful in engineering. By yielding all of the potentially optimal solutions, a designer can make focused tradeoffs within this constrained set of parameters, rather than needing to consider the full ranges of parameters.
   −
对于一个给定的系统,帕累托边界或帕累托集是所有帕累托有效的参数化(分配)的集合。找到帕累托前沿在工程学中特别有用。通过产生所有潜在的最优解决方案,设计师可以在这个受限的参数集中进行集中的权衡,而不需要考虑所有的参数。
+
对于一个给定的系统,'''<font color="#ff8000">帕累托边界(the Pareto frontier)</font>'''或'''<font color="#ff8000">帕累托集(the Pareto set)</font>'''是所有帕累托有效的参数化(分配)的集合。找到帕累托前沿在工程学中特别有用。通过产生所有潜在的最优解决方案,设计师可以在这个受限的参数集中进行集中的权衡,而不需要考虑所有的参数。
     
97

个编辑