更改

添加160字节 、 2020年11月26日 (四) 16:01
第94行: 第94行:     
* A graph is bipartite [[if and only if]] it does not contain an [[Cycle (graph theory)|odd cycle]]. Theorem 2.1.3, p. 8. Asratian et al. attribute this characterization to a 1916 paper by [[Dénes Kőnig]]. For infinite graphs, this result requires the [[axiom of choice]].
 
* A graph is bipartite [[if and only if]] it does not contain an [[Cycle (graph theory)|odd cycle]]. Theorem 2.1.3, p. 8. Asratian et al. attribute this characterization to a 1916 paper by [[Dénes Kőnig]]. For infinite graphs, this result requires the [[axiom of choice]].
* 当且仅当它不包含奇数环的时候,该图为二分图。
+
* 当且仅当它不包含奇数环的时候,该图为二分图。(定理 2.1.3,p.8.Asratian 等人将这种描述归因于 [[Dénes Kőnig]] 的 1916 年论文。对于无限图,这个结果需要 [[公理选择]]。)
    
* A graph is bipartite if and only if it is 2-colorable, (i.e. its [[chromatic number]] is less than or equal to 2).
 
* A graph is bipartite if and only if it is 2-colorable, (i.e. its [[chromatic number]] is less than or equal to 2).
526

个编辑