更改

删除8字节 、 2020年11月27日 (五) 19:58
无编辑摘要
第191行: 第191行:  
如果存在定义在“U”上的全纯函数“g”,且“g”(“a”)非零,且存在一个自然数“n”,使得对所有“z”属于“U”\{“a”},“f”(“z”)=“g”(“z”)/ (“z” – “a”)n,则点“a”为[[极点(复分析)|极]]或“f”的非本质奇点。最小的这个数“n”称为“极序”。非本质奇点处的导数本身也有一个非本质奇点,当“n”增加1时(除非“n”为0,因此<font color="#ff8000">奇点</font>可移除)。  
 
如果存在定义在“U”上的全纯函数“g”,且“g”(“a”)非零,且存在一个自然数“n”,使得对所有“z”属于“U”\{“a”},“f”(“z”)=“g”(“z”)/ (“z” – “a”)n,则点“a”为[[极点(复分析)|极]]或“f”的非本质奇点。最小的这个数“n”称为“极序”。非本质奇点处的导数本身也有一个非本质奇点,当“n”增加1时(除非“n”为0,因此<font color="#ff8000">奇点</font>可移除)。  
 
* The point ''a'' is an [[essential singularity]] of ''f'' if it is neither a removable singularity nor a pole. The point ''a'' is an essential singularity [[iff|if and only if]] the [[Laurent series]] has infinitely many powers of negative degree.<ref name=":1" />
 
* The point ''a'' is an [[essential singularity]] of ''f'' if it is neither a removable singularity nor a pole. The point ''a'' is an essential singularity [[iff|if and only if]] the [[Laurent series]] has infinitely many powers of negative degree.<ref name=":1" />
如果点“a”既不是可去奇点,也不是极点,则它是“f”的 非本质奇点。点“a”是非本质奇点[[iff |当且仅当][[Laurent级数]]具有无穷多个负次幂。
+
如果点“a”既不是可去奇点,也不是极点,则它是“f”的 非本质奇点。点“a”是非本质奇点当且仅当[[Laurent级数]]具有无穷多个负次幂。
     
29

个编辑