更改

删除1字节 、 2020年11月28日 (六) 21:37
无编辑摘要
第552行: 第552行:  
So when (n+1)p-1 is an integer, then (n+1)p-1 and (n+1)p is a mode. In the case that (n+1)p-1\notin \Z, then only \lfloor (n+1)p-1\rfloor+1=\lfloor (n+1)p\rfloor is a mode.
 
So when (n+1)p-1 is an integer, then (n+1)p-1 and (n+1)p is a mode. In the case that (n+1)p-1\notin \Z, then only \lfloor (n+1)p-1\rfloor+1=\lfloor (n+1)p\rfloor is a mode.
   −
所以当<math>(n+1)p-1</math>是一个整数时,<math>(n+1)p-1</math>和<math>(n+1)p</math>是一个模。在<math>(n+1)p-1\notin \Z</math>的情况下,只有<math>\lfloor (n+1)p-1\rfloor+1=\lfloor (n+1)p\rfloor</math>是模。<ref>See also {{cite web |first=André |last=Nicolas |title=Finding mode in Binomial distribution |work=[[Stack Exchange]] |date=January 7, 2019 |url=https://math.stackexchange.com/q/117940 }}</ref>
+
所以当<math>(n+1)p-1</math>是一个整数时,<math>(n+1)p-1</math>和<math>(n+1)p</math>是一个模。在<math>(n+1)p-1\notin Z</math>的情况下,只有<math>\lfloor (n+1)p-1\rfloor+1=\lfloor (n+1)p\rfloor</math>是模。<ref>See also {{cite web |first=André |last=Nicolas |title=Finding mode in Binomial distribution |work=[[Stack Exchange]] |date=January 7, 2019 |url=https://math.stackexchange.com/q/117940 }}</ref>
     
16

个编辑