更改

添加12字节 、 2020年12月8日 (二) 18:01
无编辑摘要
第17行: 第17行:  
Automated machine learning (AutoML) is the process of automating the process of applying machine learning to real-world problems. AutoML covers the complete pipeline from the raw dataset to the deployable machine learning model. AutoML was proposed as an artificial intelligence-based solution to the ever-growing challenge of applying machine learning. The high degree of automation in AutoML allows non-experts to make use of machine learning models and techniques without requiring to become an expert in this field first.  
 
Automated machine learning (AutoML) is the process of automating the process of applying machine learning to real-world problems. AutoML covers the complete pipeline from the raw dataset to the deployable machine learning model. AutoML was proposed as an artificial intelligence-based solution to the ever-growing challenge of applying machine learning. The high degree of automation in AutoML allows non-experts to make use of machine learning models and techniques without requiring to become an expert in this field first.  
   −
'''<font color="#ff8000">自动机器学习 Automated machine learning,AutoML</font>'''是指实现机器学习自动应用于实际问题的过程。自动机器学习涵盖了从原始数据集到可部署机器学习模型的整个流程。作为一种基于人工智能的解决方案,自动机器学习被用于应对机器学习方面日益增长的挑战<ref name="autoweka1">{{cite conference|year=2013|title=Auto-WEKA: Combined Selection and Hyperparameter Optimization of Classification Algorithms|url=https://dl.acm.org/citation.cfm?id=2487629|conference=KDD '13 Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining|pages=847–855|vauthors=Thornton C, Hutter F, Hoos HH, Leyton-Brown K}}</ref><ref name="AutoML2014ICML"/>。自动机器学习中高度的自动化允许非专业人员在无需成为该领域专家的前提下使用机器学习的模型和技术。
+
'''<font color="#ff8000">自动机器学习 Automated machine learning,AutoML</font>'''是指让机器学习得以自动应用于实际问题的过程。自动机器学习涵盖了从原始数据集到可部署机器学习模型的整个流程。作为一种基于人工智能的解决方案,自动机器学习被用来解决在机器学习应用方面日益增长的挑战<ref name="autoweka1">{{cite conference|year=2013|title=Auto-WEKA: Combined Selection and Hyperparameter Optimization of Classification Algorithms|url=https://dl.acm.org/citation.cfm?id=2487629|conference=KDD '13 Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining|pages=847–855|vauthors=Thornton C, Hutter F, Hoos HH, Leyton-Brown K}}</ref><ref name="AutoML2014ICML"/>。自动机器学习中高度的自动化允许非专业人员在无需成为该领域专家的前提下使用机器学习的模型和技术。
     
43

个编辑