更改

删除2字节 、 2020年12月11日 (五) 15:35
第85行: 第85行:  
The joint entropy of a set of variables is less than or equal to the sum of the individual entropies of the variables in the set.  This is an example of [[subadditivity]].  This inequality is an equality if and only if <math>X</math> and <math>Y</math> are [[statistically independent]].<ref name=cover1991 />{{rp|30}}
 
The joint entropy of a set of variables is less than or equal to the sum of the individual entropies of the variables in the set.  This is an example of [[subadditivity]].  This inequality is an equality if and only if <math>X</math> and <math>Y</math> are [[statistically independent]].<ref name=cover1991 />{{rp|30}}
   −
一组变量的联合熵小于或等于该组变量各个熵的总和。这是次可加性的一个例子。即当且仅当<math>X</math>和<math>Y</math>在统计上独立时,该不等式才是等式。<ref name=cover1991 />{{rp|30}}
+
一组变量的联合熵小于或等于该组变量各个熵的总和,这是次可加性的一个运用实例。即当且仅当<math>X</math>和<math>Y</math>独立统计时,该不等式才是等式。<ref name=cover1991 />{{rp|30}}
      第91行: 第91行:     
:<math>H(X_1,\ldots, X_n) \leq H(X_1) + \ldots + H(X_n)</math>
 
:<math>H(X_1,\ldots, X_n) \leq H(X_1) + \ldots + H(X_n)</math>
  −
      
== Relations to other entropy measures 与其他熵测度的关系 ==
 
== Relations to other entropy measures 与其他熵测度的关系 ==
526

个编辑