更改

添加24字节 、 2020年12月13日 (日) 09:36
第130行: 第130行:  
where <math>(\lambda_k)_k</math> and <math>(\mu_j)_j</math> are the vectors of multipliers. Taking the partial derivative of the Lagrangian with respect to each good <math>x_j^k</math> for <math>j=1,\ldots,n</math> and <math>k=1,\ldots, m</math> and gives the following system of first-order conditions:
 
where <math>(\lambda_k)_k</math> and <math>(\mu_j)_j</math> are the vectors of multipliers. Taking the partial derivative of the Lagrangian with respect to each good <math>x_j^k</math> for <math>j=1,\ldots,n</math> and <math>k=1,\ldots, m</math> and gives the following system of first-order conditions:
   −
其中<math>(\lambda_k)_k</math>和<math>(\mu_j)_j</math>是乘子的向量。取关于商品的拉格朗日函数的偏导数<math>x_j^k</math> <math>j=1,\ldots,n</math> ,<math>k=1,\ldots, m</math>),并给出以下一阶条件系统:
+
其中<math>(\lambda_k)_k</math>和<math>(\mu_j)_j</math>是乘子的向量。取关于商品的拉格朗日函数的偏导数<math>x_j^k</math>,其中<math>j=1,\ldots,n</math> ,<math>k=1,\ldots, m</math>,并给出以下一阶条件系统:
   −
: <math>\frac{\partial L_i}{\partial x_j^i} = f_{x^i_j}^1-\mu_j=0\text{ for }j=1,\ldots,n,</math>
+
: 对于<math>j=1,\ldots,n</math>, <math>\frac{\partial L_i}{\partial x_j^i} = f_{x^i_j}^1-\mu_j=0\</math>
      −
: <math>\frac{\partial L_i}{\partial x_j^k} = -\lambda_k f_{x^k_j}^i-\mu_j=0 \text{ for }k= 2,\ldots,m \text{ and }j=1,\ldots,n,</math>
+
: 对于<math>k= 2,\ldots,m</math>,<math>j=1,\ldots,n</math>,<math>\frac{\partial L_i}{\partial x_j^k} = -\lambda_k f_{x^k_j}^i-\mu_j=0</math>
     
7,129

个编辑