更改

添加2字节 、 2020年12月15日 (二) 20:34
无编辑摘要
第860行: 第860行:     
能量法是验证初边值问题适定性的一种数学方法。 时变偏微分方程的高阶差分方法
 
能量法是验证初边值问题适定性的一种数学方法。 时变偏微分方程的高阶差分方法
 +
 +
能量法是一种数学过程,可用于验证初始边界值问题的适定性。在下面的示例中,将使用能量法决定应在何处施加哪些边界条件,以使得到的IBVP处于适当位置。考虑下式给出的一维双曲PDE
    
|first=Bertil|last=Gustafsson|publisher=Springer|year=2008|isbn=978-3-540-74992-9|doi=10.1007/978-3-540-74993-6}}</ref> In the following example the energy method is used to decide where and which boundary conditions should be imposed such that the resulting IBVP is well-posed. Consider the one-dimensional hyperbolic PDE given by
 
|first=Bertil|last=Gustafsson|publisher=Springer|year=2008|isbn=978-3-540-74992-9|doi=10.1007/978-3-540-74993-6}}</ref> In the following example the energy method is used to decide where and which boundary conditions should be imposed such that the resulting IBVP is well-posed. Consider the one-dimensional hyperbolic PDE given by
第884行: 第886行:  
其中 <math>\alpha \neq 0</math> 是常数,并且 <math>u(x,t)</math> 是未知函数,初始条件是 <math>u(x,0) = f(x)</math>。乘以 <math>u</math> 并在域上进行积分。
 
其中 <math>\alpha \neq 0</math> 是常数,并且 <math>u(x,t)</math> 是未知函数,初始条件是 <math>u(x,0) = f(x)</math>。乘以 <math>u</math> 并在域上进行积分。
   −
能量法是一种数学过程,可用于验证初始边界值问题的适定性。在下面的示例中,将使用能量法决定应在何处施加哪些边界条件,以使得到的IBVP处于适当位置。考虑下式给出的一维双曲PDE
+
 
    
: <math>\int_a^b u \frac{\partial u}{\partial t} \operatorname dx + \alpha \int _a ^b u \frac{\partial u}{\partial x} \operatorname dx = 0.</math>
 
: <math>\int_a^b u \frac{\partial u}{\partial t} \operatorname dx + \alpha \int _a ^b u \frac{\partial u}{\partial x} \operatorname dx = 0.</math>
66

个编辑