更改

删除694字节 、 2020年12月20日 (日) 19:25
无编辑摘要
第28行: 第28行:  
|-
 
|-
 
! !! e<sub>1</sub> !! e<sub>2</sub> !! e<sub>3</sub> !! e<sub>4</sub>
 
! !! e<sub>1</sub> !! e<sub>2</sub> !! e<sub>3</sub> !! e<sub>4</sub>
!1
   
!1
 
!1
 
|1||1||1||0
 
|1||1||1||0
第56行: 第55行:  
观察关联矩阵,我们就会发现,因为每条边都有一个顶点连接到每个端点,所以每一列的和总是等于2。
 
观察关联矩阵,我们就会发现,因为每条边都有一个顶点连接到每个端点,所以每一列的和总是等于2。
   −
  −
  −
The ''incidence matrix'' of a [[directed graph]] is a {{nowrap|''n'' × ''m''}} matrix ''B'' where ''n'' and ''m'' are the number of vertices and edges respectively, such that {{nowrap|1=''B''<sub>''i'',''j''</sub> = −1}} if the edge ''e''<sub>''j''</sub> leaves vertex ''v''<sub>i</sub>, 1 if it enters vertex ''v''<sub>''i''</sub> and 0 otherwise (many authors use the opposite sign convention).
  −
  −
The incidence matrix of a directed graph is a  matrix B where n and m are the number of vertices and edges respectively, such that  if the edge e<sub>j</sub> leaves vertex v<sub>i</sub>, 1 if it enters vertex v<sub>i</sub> and 0 otherwise (many authors use the opposite sign convention).
      
'''<font color="#32CD32">有向图的关联矩阵是一个矩阵''B'',其中 ''n'' 和 ''m'' 分别是顶点和边的数目,这样当边 e<sub>j</sub> 离开顶点 v<sub>i</sub>,时为1,当它进入顶点 v<sub>i</sub> ,时为0(许多作者使用相反的符号约定)。</font>The incidence matrix of a directed graph is a  matrix B where n and m are the number of vertices and edges respectively, such that  if the edge e<sub>j</sub> leaves vertex v<sub>i</sub>, 1 if it enters vertex v<sub>i</sub> and 0 otherwise (many authors use the opposite sign convention).
 
'''<font color="#32CD32">有向图的关联矩阵是一个矩阵''B'',其中 ''n'' 和 ''m'' 分别是顶点和边的数目,这样当边 e<sub>j</sub> 离开顶点 v<sub>i</sub>,时为1,当它进入顶点 v<sub>i</sub> ,时为0(许多作者使用相反的符号约定)。</font>The incidence matrix of a directed graph is a  matrix B where n and m are the number of vertices and edges respectively, such that  if the edge e<sub>j</sub> leaves vertex v<sub>i</sub>, 1 if it enters vertex v<sub>i</sub> and 0 otherwise (many authors use the opposite sign convention).
7,129

个编辑