第1行: |
第1行: |
− | 本词条由11初步翻译
| + | 本词条由11初步翻译,由Flipped审校 |
| | | |
| https://wiki.swarma.org/index.php?title=%E5%B9%B3%E8%A1%A1%E7%90%86%E8%AE%BA#:~:text=%E6%9C%AC%E8%AF%8D%E6%9D%A1%E7%94%B1,11%E5%88%9D%E6%AD%A5%E7%BF%BB%E8%AF%91 | | https://wiki.swarma.org/index.php?title=%E5%B9%B3%E8%A1%A1%E7%90%86%E8%AE%BA#:~:text=%E6%9C%AC%E8%AF%8D%E6%9D%A1%E7%94%B1,11%E5%88%9D%E6%AD%A5%E7%BF%BB%E8%AF%91 |
第19行: |
第19行: |
| In information theory, Shannon's source coding theorem (or noiseless coding theorem) establishes the limits to possible data compression, and the operational meaning of the Shannon entropy. | | In information theory, Shannon's source coding theorem (or noiseless coding theorem) establishes the limits to possible data compression, and the operational meaning of the Shannon entropy. |
| | | |
− | 在信息理论中,'''<font color="#ff8000"> 香农信源编码定理Shannon's source coding theorem </font>'''(或无噪声编码定理)建立了可能的数据压缩的极限,以及香农熵的操作意义。 | + | 在信息理论中,'''<font color="#ff8000"> 香农信源编码定理 Shannon's source coding theorem </font>'''(或无噪声编码定理)建立了可能的'''<font color="#ff8000"> 数据压缩 data compression </font>'''的极限,以及'''<font color="#ff8000"> 香农熵 Shannon entropy </font>'''的操作意义。 |
| | | |
| | | |
第26行: |
第26行: |
| Named after Claude Shannon, the source coding theorem shows that (in the limit, as the length of a stream of independent and identically-distributed random variable (i.i.d.) data tends to infinity) it is impossible to compress the data such that the code rate (average number of bits per symbol) is less than the Shannon entropy of the source, without it being virtually certain that information will be lost. However it is possible to get the code rate arbitrarily close to the Shannon entropy, with negligible probability of loss. | | Named after Claude Shannon, the source coding theorem shows that (in the limit, as the length of a stream of independent and identically-distributed random variable (i.i.d.) data tends to infinity) it is impossible to compress the data such that the code rate (average number of bits per symbol) is less than the Shannon entropy of the source, without it being virtually certain that information will be lost. However it is possible to get the code rate arbitrarily close to the Shannon entropy, with negligible probability of loss. |
| | | |
− | 以Claude Shannon克劳德·香农命名的信源编码定理表明,(在极限情况下,当独立的、相同分布的随机变量(i.i.d.)数据流的长度趋于无穷大时)不可能压缩数据,使码率(每个符号的平均比特数)小于信源的香农熵,而事实上又不能确定信息会丢失。然而,可以任意地使码率接近香农熵,损失的概率可以忽略不计。
| + | 以克劳德·香农 Claude Shannon命名的信源编码定理表明,(在极限情况下,当独立的均匀分布的随机变量(i.i.d.)数据流的长度趋于无穷大时)不可能压缩数据使编码率(每个符号的平均比特数)小于信源的香农熵,而事实上又不能确定信息会丢失。然而,可以任意地使码率接近香农熵,损失的概率可以忽略不计。 |
| | | |
| | | |
第34行: |
第34行: |
| The source coding theorem for symbol codes places an upper and a lower bound on the minimal possible expected length of codewords as a function of the entropy of the input word (which is viewed as a random variable) and of the size of the target alphabet. | | The source coding theorem for symbol codes places an upper and a lower bound on the minimal possible expected length of codewords as a function of the entropy of the input word (which is viewed as a random variable) and of the size of the target alphabet. |
| | | |
− | 符号码的信源编码定理在最小可能期望码字长度上设置了一个上下界,该上下界是输入字(被视为一个随机变量)熵和目标字母表大小的函数。
| + | 符号码的信源编码定理根据输入单词(被视为一个随机变量)熵和目标字母表大小将最小可能期望码字长度作为一个函数,并设置了一个上下界。 |
| | | |
| | | |
第45行: |
第45行: |
| Source coding is a mapping from (a sequence of) symbols from an information source to a sequence of alphabet symbols (usually bits) such that the source symbols can be exactly recovered from the binary bits (lossless source coding) or recovered within some distortion (lossy source coding). This is the concept behind data compression. | | Source coding is a mapping from (a sequence of) symbols from an information source to a sequence of alphabet symbols (usually bits) such that the source symbols can be exactly recovered from the binary bits (lossless source coding) or recovered within some distortion (lossy source coding). This is the concept behind data compression. |
| | | |
− | 信源编码是从信源符号序列到字母符号序列(通常是比特)的映射,以使信源符号能够准确地从二进制比特位(无损源编码)恢复或在某种失真(有损源编码)范围内恢复。这就是数据压缩的概念。 | + | 信源编码是从信源符号序列到字母符号序列(通常是比特)的映射,使信源符号能够准确地从二进制比特位(无损源编码)恢复或在某种失真(有损源编码)范围内恢复。这就是数据压缩的概念。 |
| | | |
| | | |
第56行: |
第56行: |
| In information theory, the source coding theorem (Shannon 1948) | | In information theory, the source coding theorem (Shannon 1948) |
| | | |
− | 在信息论中,信源编码定理(Shannon,1948) | + | 在信息论中,信源编码定理(Shannon,1948) <ref name="Shannon"/>非正式地表明(MacKay 2003, pg. 81,<ref name="MacKay"/> Cover 2006, Chapter 5<ref name="Cover"/>): |
| | | |
| | | |
第65行: |
第65行: |
| | | |
| }} | | }} |
− | <blockquote>{{mvar|N}}。[[独立和相同分布的随机变量|i.i.d.]]每个随机变量都有[[熵(信息论)|熵]]。{{math|''H''(''X'')}}可以压缩成多个{{math|''N H''(''X'')}}。[[位]]的信息丢失风险可以忽略不计,如{{math|''N'' → ∞}};但反过来说,如果它们被压缩成少于{{math|''N H''(''X'')}}位,则几乎可以肯定信息将丢失。 | + | <blockquote>{{mvar|N}}。[[独立和相同分布的随机变量|i.i.d.]]每个随机变量都有[[熵(信息论)|熵]]。{{math|''H''(''X'')}}可以压缩成超过{{math|''N H''(''X'')}}。随着{{math|''N'' → ∞}} ,[[位]]的信息丢失风险可以忽略不计;但反过来说,如果它们被压缩成少于{{math|''N H''(''X'')}}位,则信息肯定将丢失。 |
| | | |
| | | |
第76行: |
第76行: |
| | | |
| Let {{math|Σ<sub>1</sub>, Σ<sub>2</sub>}} denote two finite alphabets and let {{math|Σ{{su|b=1|p=∗}}}} and {{math|Σ{{su|b=2|p=∗}}}} denote the [[Kleene star|set of all finite words]] from those alphabets (respectively). | | Let {{math|Σ<sub>1</sub>, Σ<sub>2</sub>}} denote two finite alphabets and let {{math|Σ{{su|b=1|p=∗}}}} and {{math|Σ{{su|b=2|p=∗}}}} denote the [[Kleene star|set of all finite words]] from those alphabets (respectively). |
| + | |
| + | 令{{math|Σ<sub>1</sub>, Σ<sub>2</sub>}}表示两个有限字母,并让{{math|Σ{{su|b=1|p=∗}}}} 和 {{math|Σ{{su|b=2|p=∗}}}}分别表示这些字母中所有有限词的集合 |
| | | |
| Category:Coding theory | | Category:Coding theory |