更改

添加38字节 、 2021年1月13日 (三) 00:01
第17行: 第17行:  
The joint [[Shannon entropy]] (in [[bit]]s) of two discrete [[random variable|random variables]] <math>X</math> and <math>Y</math> with images <math>\mathcal X</math> and <math>\mathcal Y</math> is defined as<ref name=cover1991>{{cite book |author1=Thomas M. Cover |author2=Joy A. Thomas |title=Elements of Information Theory |publisher=Wiley |location=Hoboken, New Jersey |year= |isbn=0-471-24195-4}}</ref>{{rp|16}}
 
The joint [[Shannon entropy]] (in [[bit]]s) of two discrete [[random variable|random variables]] <math>X</math> and <math>Y</math> with images <math>\mathcal X</math> and <math>\mathcal Y</math> is defined as<ref name=cover1991>{{cite book |author1=Thomas M. Cover |author2=Joy A. Thomas |title=Elements of Information Theory |publisher=Wiley |location=Hoboken, New Jersey |year= |isbn=0-471-24195-4}}</ref>{{rp|16}}
   −
联合熵Shannon entropy </font>'''的定义是:以比特为单位,对于具有<math>\mathcal X</math>和<math>\mathcal Y</math>的两个离散随机变量函数<math>X</math>和<math>Y</math>'''有<font color="#ff8000">
+
联合熵Shannon entropy </font>'''的定义是:以比特为单位,对于具有<math>\mathcal X</math>和<math>\mathcal Y</math>的两个离散随机变量函数<math>X</math>和<math>Y</math>'''有
    
{{Equation box 1
 
{{Equation box 1
第24行: 第24行:  
|equation = {{NumBlk||<math>\Eta(X,Y) = -\sum_{x\in\mathcal X} \sum_{y\in\mathcal Y} P(x,y) \log_2[P(x,y)]</math>|{{EquationRef|Eq.1}}}}
 
|equation = {{NumBlk||<math>\Eta(X,Y) = -\sum_{x\in\mathcal X} \sum_{y\in\mathcal Y} P(x,y) \log_2[P(x,y)]</math>|{{EquationRef|Eq.1}}}}
 
|cellpadding= 6
 
|cellpadding= 6
 
+
|border
 +
|border colour = #0073CF
 +
|background colour=#F5FFFA}}
     
143

个编辑