第1行: |
第1行: |
| 此词条由Jie翻译 | | 此词条由Jie翻译 |
| | | |
− | {{short description|A version of the second law of thermodynamics}}
| |
− |
| |
− | {{Thermodynamics|cTopic=[[Thermodynamic equations|Equations]]}}
| |
− |
| |
− |
| |
− |
| |
− | The '''Clausius theorem''' (1855) states that for a [[thermodynamic system]] (e.g. [[heat engine]] or [[Heat pump and refrigeration cycle|heat pump]]) exchanging heat with [[Thermal reservoir|external reservoirs]] and undergoing a [[thermodynamic cycle]],
| |
− |
| |
− | The Clausius theorem (1855) states that for a thermodynamic system (e.g. heat engine or heat pump) exchanging heat with external reservoirs and undergoing a thermodynamic cycle,
| |
| | | |
| '''克劳修斯定理Clausius theorem'''(1855)指出,对于'''<font color="#ff8000"> 热力学系统Thermodynamic system </font>'''(例如,热机或热泵),当其与'''<font color="#ff8000"> 外部热库External reservoirs</font>'''进行热交换并经历'''<font color="#ff8000"> 热力学循环Thermodynamic cycle</font>'''时, | | '''克劳修斯定理Clausius theorem'''(1855)指出,对于'''<font color="#ff8000"> 热力学系统Thermodynamic system </font>'''(例如,热机或热泵),当其与'''<font color="#ff8000"> 外部热库External reservoirs</font>'''进行热交换并经历'''<font color="#ff8000"> 热力学循环Thermodynamic cycle</font>'''时, |
第16行: |
第7行: |
| :<math>\oint \frac{\delta Q}{T_{\text{surr}}} \leq 0,</math> | | :<math>\oint \frac{\delta Q}{T_{\text{surr}}} \leq 0,</math> |
| | | |
− |
| |
− | where <math>\delta Q</math> is the infinitesimal amount of heat absorbed by the system from the reservoir and <math>T_{\text{surr}}</math> is the [[temperature]] of the external reservoir (surroundings) at a particular instant in time. The closed integral is carried out along a [[thermodynamic process path]] from the initial/final state to the same initial/final state. In principle, the closed integral can start and end at an arbitrary point along the path.
| |
− |
| |
− | where <math>\delta Q</math> is the infinitesimal amount of heat absorbed by the system from the reservoir and <math>T_{\text{surr}}</math> is the temperature of the external reservoir (surroundings) at a particular instant in time. The closed integral is carried out along a thermodynamic process path from the initial/final state to the same initial/final state. In principle, the closed integral can start and end at an arbitrary point along the path.
| |
| | | |
| 其中<math>\delta Q</math>是系统从热库吸收的热量极小值,<math>T_{\text{surr}}</math>是特定时间点外部热库(周围环境)的温度。该表达式是指,沿着'''<font color="#ff8000"> 热力学过程路径Thermodynamic process path</font>'''(从初始/最终状态到相同的初始/最终状态下)所执行的闭合积分。原则上,该闭合积分可以沿路径的任意点开始和结束。 | | 其中<math>\delta Q</math>是系统从热库吸收的热量极小值,<math>T_{\text{surr}}</math>是特定时间点外部热库(周围环境)的温度。该表达式是指,沿着'''<font color="#ff8000"> 热力学过程路径Thermodynamic process path</font>'''(从初始/最终状态到相同的初始/最终状态下)所执行的闭合积分。原则上,该闭合积分可以沿路径的任意点开始和结束。 |
| | | |
| | | |
− | If there are multiple reservoirs with different temperatures <math>\left(T_1,T_2, \cdots T_n\right)</math>, then Clausius inequality reads:
| |
− |
| |
− | If there are multiple reservoirs with different temperatures <math>\left(T_1,T_2, \cdots T_n\right)</math>, then Clausius inequality reads:
| |
| | | |
| 如果存在有多个具有不同温度<math>\left(T_1,T_2, \cdots T_n\right)</math>的热库,则克劳修斯不等式为: | | 如果存在有多个具有不同温度<math>\left(T_1,T_2, \cdots T_n\right)</math>的热库,则克劳修斯不等式为: |