Recent research has shown that bounded rationality of individuals may influence the topology of the social networks that evolve among them. In particular, Kasthurirathna and Piraveenan have shown that in socio-ecological systems, the drive towards improved rationality on average might be an evolutionary reason for the emergence of scale-free properties. They did this by simulating a number of strategic games on an initially random network with distributed bounded rationality, then re-wiring the network so that the network on average converged towards Nash equilibria, despite the bounded rationality of nodes. They observed that this re-wiring process results in scale-free networks. Since scale-free networks are ubiquitous in social systems, the link between bounded rationality distributions and social structure is an important one in explaining social phenomena. | Recent research has shown that bounded rationality of individuals may influence the topology of the social networks that evolve among them. In particular, Kasthurirathna and Piraveenan have shown that in socio-ecological systems, the drive towards improved rationality on average might be an evolutionary reason for the emergence of scale-free properties. They did this by simulating a number of strategic games on an initially random network with distributed bounded rationality, then re-wiring the network so that the network on average converged towards Nash equilibria, despite the bounded rationality of nodes. They observed that this re-wiring process results in scale-free networks. Since scale-free networks are ubiquitous in social systems, the link between bounded rationality distributions and social structure is an important one in explaining social phenomena. |