第7行: |
第7行: |
| == 迭代函数 == | | == 迭代函数 == |
| | | |
− | Given a [[mapping (mathematics)|mapping]] ''f'' from a [[set (mathematics)|set]] ''X'' into itself,
| |
| | | |
| 给定一个从集合<math>X</math>到自身的映射<math>f</math>, | | 给定一个从集合<math>X</math>到自身的映射<math>f</math>, |
第21行: |
第20行: |
| where <math>f_n</math> is the ''n''th [[iterated function|iterate]] of ''f''. The smallest positive [[integer]] ''n'' satisfying the above is called the ''prime period'' or ''least period'' of the point ''x''. If every point in ''X'' is a periodic point with the same period ''n'', then ''f'' is called ''periodic'' with period ''n'' (this is not to be confused with the notion of a [[periodic function]]). | | where <math>f_n</math> is the ''n''th [[iterated function|iterate]] of ''f''. The smallest positive [[integer]] ''n'' satisfying the above is called the ''prime period'' or ''least period'' of the point ''x''. If every point in ''X'' is a periodic point with the same period ''n'', then ''f'' is called ''periodic'' with period ''n'' (this is not to be confused with the notion of a [[periodic function]]). |
| | | |
− | 其中<math>f_n</math>为<math>f</math>的第<math>n</math>次迭代。满足上述条件的最小正整数<math>n</math>称为点<math>x</math>的素数周期或最小周期。如果X中的每一个点都是周期为n的周期点,那么 f被称为周期点,周期为n(这不能和周期函数的概念混淆)。 | + | 其中<math>f_n</math>为<math>f</math>的第<math>n</math>次迭代。满足上述条件的最小正整数<math>n</math>称为点<math>x</math>的素数周期prime period或最小周期。如果<math>X</math>中的每一个点都是周期为<math>n</math>的周期点,那么<math>f</math>有周期性,周期为<math>n</math>(这不能和周期函数的概念混淆)。 |
| | | |
| | | |
第27行: |
第26行: |
| If there exist distinct ''n'' and ''m'' such that <math>f_n(x) = f_m(x)</math> | | If there exist distinct ''n'' and ''m'' such that <math>f_n(x) = f_m(x)</math> |
| | | |
− | 如果存在不同的n和m使:<math>f_n(x) = f_m(x)</math>
| + | 如果存在不同的<math>n</math>和<math>m</math>使:<math>f_n(x) = f_m(x)</math> |
| | | |
| then ''x'' is called a '''preperiodic point'''. All periodic points are preperiodic. | | then ''x'' is called a '''preperiodic point'''. All periodic points are preperiodic. |
| | | |
− | 那么x称为前周期点。所有周期点都是预周期点。
| + | 那么<math>x</math>称为前周期点。所有周期点都是前周期点。 |
| | | |
| If ''f'' is a [[diffeomorphism]] of a [[differentiable manifold]], so that the [[derivative]] <math>f_n^\prime</math> is defined, then one says that a periodic point is ''hyperbolic'' if | | If ''f'' is a [[diffeomorphism]] of a [[differentiable manifold]], so that the [[derivative]] <math>f_n^\prime</math> is defined, then one says that a periodic point is ''hyperbolic'' if |
第37行: |
第36行: |
| :<math>|f_n^\prime|\ne 1,</math> | | :<math>|f_n^\prime|\ne 1,</math> |
| | | |
− | 如果f是微分流形的微分同胚,则定义了导数<math>f_n^\prime</math>,如果:<math>|f_n^\prime|\ne 1,</math>,那么f是双曲周期点,
| + | 如果<math>x</math>是微分流形的微分同胚,则定义了导数<math>f_n^\prime</math>,如果:<math>|f_n^\prime|\ne 1,</math>,那么<math>f</math>是双曲周期点, |
| | | |
| that it is ''[[Attractor|attractive]]'' if :<math>|f_n^\prime|< 1,</math> | | that it is ''[[Attractor|attractive]]'' if :<math>|f_n^\prime|< 1,</math> |
| | | |
− | 如果:<math>|f_n^\prime|< 1,</math>,则称周期点f为吸引子, | + | 如果:<math>|f_n^\prime|< 1,</math>,则称周期点<math>f</math>为吸引子, |
| | | |
| and it is ''repelling'' if:<math>|f_n^\prime|> 1.</math> | | and it is ''repelling'' if:<math>|f_n^\prime|> 1.</math> |
| | | |
− | 如果:<math>|f_n^\prime|> 1.</math>,则称周期点f为排斥子。 | + | 如果:<math>|f_n^\prime|> 1.</math>,则称周期点<math>f</math>为排斥子。 |
| | | |
| If the [[dimension]] of the [[stable manifold]] of a periodic point or fixed point is zero, the point is called a ''source''; if the dimension of its [[unstable manifold]] is zero, it is called a ''sink''; and if both the stable and unstable manifold have nonzero dimension, it is called a ''saddle'' or [[saddle point]]. | | If the [[dimension]] of the [[stable manifold]] of a periodic point or fixed point is zero, the point is called a ''source''; if the dimension of its [[unstable manifold]] is zero, it is called a ''sink''; and if both the stable and unstable manifold have nonzero dimension, it is called a ''saddle'' or [[saddle point]]. |
第53行: |
第52行: |
| | | |
| | | |
− | === Examples === | + | ===示例 === |
| | | |
| A period-one point is called a [[fixed point (mathematics)|fixed point]]. | | A period-one point is called a [[fixed point (mathematics)|fixed point]]. |
第70行: |
第69行: |
| | | |
| 参数r的各种值呈现周期性。对于介于0到1之间的r,0是唯一的周期点,周期为1(给出了吸引所有轨道的序列0,0,0,... )。对于介于1到3之间的r,值0仍然是周期性的,但不是吸引点,而该值是周期1的吸引周期点。当r大于3但小于1 + 时,存在一对周期2的点,它们共同构成一个吸引序列,非吸引周期1点为0。当参数r的值上升到4时,会出现周期为正的一组周期点;对于 r 的某些值,这些重复序列中的一个被吸引,而对于其他值,则没有一个被吸引(几乎所有的轨道都是混乱的)。 | | 参数r的各种值呈现周期性。对于介于0到1之间的r,0是唯一的周期点,周期为1(给出了吸引所有轨道的序列0,0,0,... )。对于介于1到3之间的r,值0仍然是周期性的,但不是吸引点,而该值是周期1的吸引周期点。当r大于3但小于1 + 时,存在一对周期2的点,它们共同构成一个吸引序列,非吸引周期1点为0。当参数r的值上升到4时,会出现周期为正的一组周期点;对于 r 的某些值,这些重复序列中的一个被吸引,而对于其他值,则没有一个被吸引(几乎所有的轨道都是混乱的)。 |
− |
| |
− |
| |
| | | |
| == Dynamical system == | | == Dynamical system == |