更改

添加546字节 、 2021年1月22日 (五) 21:24
第175行: 第175行:     
==Influence==
 
==Influence==
 
+
影响
       
As in quantum field theory the "fat tails" can be obtained by complicated "nonperturbative" methods, mainly by numerical ones, since they contain the deviations from the usual Gaussian approximations, e.g. the Black–Scholes theory.  Fat tails can, however, also be due to other phenomena, such as a random number of terms in the central-limit theorem, or any number of other, non-econophysics models. Due to the difficulty in testing such models, they have received less attention in traditional economic analysis.
 
As in quantum field theory the "fat tails" can be obtained by complicated "nonperturbative" methods, mainly by numerical ones, since they contain the deviations from the usual Gaussian approximations, e.g. the Black–Scholes theory.  Fat tails can, however, also be due to other phenomena, such as a random number of terms in the central-limit theorem, or any number of other, non-econophysics models. Due to the difficulty in testing such models, they have received less attention in traditional economic analysis.
   −
正如在量子场论中一样,“胖尾”可以通过复杂的“非微扰”方法得到,主要是通过数值方法,因为它们包含了通常的高斯近似的偏差,例如:。布莱克-斯科尔斯理论。然而,肥尾也可能是由其他现象引起的,比如中心极限定理中的随机项数,或者其他任何非经济物理学模型。由于这些模型难以检验,因此在传统的经济分析中很少受到重视。
+
正如在量子场论中一样,“胖尾”可以通过复杂的“非微扰”方法得到,主要是通过数值方法,因为它们包含了通常的高斯近似的偏差,例如:布莱克-斯科尔斯理论。然而,肥尾也可能是由其他现象引起的,比如中心极限定理中的随机项数,或者其他任何非经济物理学模型。由于这些模型难以检验,因此在传统的经济分析中很少受到重视。
    
Papers on econophysics have been published primarily in journals devoted to physics and statistical mechanics, rather than in leading economics journals. Some [[Mainstream economics|Mainstream economists]] have generally been unimpressed by this work.<ref>{{cite journal |author=Philip Ball |title=Econophysics: Culture Crash |journal=Nature |volume=441 |pages=686–688 |year=2006 |doi=10.1038/441686a |pmid=16760949 |issue=7094|bibcode = 2006Natur.441..686B |citeseerx=10.1.1.188.8120 |s2cid=4319192 }}</ref> Other economists, including [[Mauro Gallegati]], [[Steve Keen]], [[Paul Ormerod]], and Alan Kirman have shown more interest, but also criticized some trends in econophysics. More recently, [[Vernon L. Smith]], one of the founders of [[experimental economics]] and [[Nobel Memorial Prize in Economic Sciences]] laureate, has used these techniques and claimed they show a lot of promise.<ref name = CaSm></ref>   
 
Papers on econophysics have been published primarily in journals devoted to physics and statistical mechanics, rather than in leading economics journals. Some [[Mainstream economics|Mainstream economists]] have generally been unimpressed by this work.<ref>{{cite journal |author=Philip Ball |title=Econophysics: Culture Crash |journal=Nature |volume=441 |pages=686–688 |year=2006 |doi=10.1038/441686a |pmid=16760949 |issue=7094|bibcode = 2006Natur.441..686B |citeseerx=10.1.1.188.8120 |s2cid=4319192 }}</ref> Other economists, including [[Mauro Gallegati]], [[Steve Keen]], [[Paul Ormerod]], and Alan Kirman have shown more interest, but also criticized some trends in econophysics. More recently, [[Vernon L. Smith]], one of the founders of [[experimental economics]] and [[Nobel Memorial Prize in Economic Sciences]] laureate, has used these techniques and claimed they show a lot of promise.<ref name = CaSm></ref>   
    +
关于经济物理学的论文主要发表在专门研究物理学和统计力学的期刊上,而不是主要的经济学期刊上。一些主流经济学家普遍对这项研究不以为然。其他经济学家,包括毛罗·加勒盖蒂,史蒂夫·基恩,保罗·奥默罗德和艾伦·基尔曼对此表现出了更多的兴趣,但也批评了经济物理学的一些趋势。最近,实验经济学创始人之一、诺贝尔经济学奖得主弗农·L·史密斯使用了这些技术,并声称它们表现出良好的前景。
       
Econophysics is having some impacts on the more applied field of [[quantitative finance]], whose scope and aims significantly differ from those of economic theory. Various econophysicists have introduced models for price fluctuations in [[physics of financial markets]] or original points of view on established models.<ref name="autogenerated2003"/><ref>{{cite journal |author=Enrico Scalas |title=The application of continuous-time random walks in finance and economics |journal=Physica A |volume=362 |pages=225–239 |year=2006 |doi=10.1016/j.physa.2005.11.024|bibcode = 2006PhyA..362..225S |issue=2 }}</ref><ref>{{cite journal |author1=Y. Shapira |author2=Y. Berman |author3=E. Ben-Jacob |title=Modelling the short term herding behaviour of stock markets |journal=New Journal of Physics |volume=16 |issue=5 |year=2014 | doi= 10.1088/1367-2630/16/5/053040|bibcode = 2014NJPh...16e3040S |page=053040|doi-access=free }}</ref> Also several scaling laws have been found in various economic data.<ref>{{cite journal |author1=Y. Liu |author2=P. Gopikrishnan |author3=P. Cizeau |author4=M. Meyer |author5=C.-K. Peng |author6=H. E. Stanley |title=Statistical properties of the volatility of price fluctuations |year=1999| journal=[[Physical Review E]]| volume=60| issue=2|pages=1390–400 | doi= 10.1103/PhysRevE.60.1390|pmid=11969899 |arxiv = cond-mat/9903369 |bibcode = 1999PhRvE..60.1390L |citeseerx=10.1.1.241.9346 |s2cid=7512788 }}</ref><ref>{{cite journal |author1=M. H. R. Stanley |author2=L. A. N. Amaral |author3=S. V. Buldyrev |author4=S. Havlin |author5=H. Leschhorn |author6=P. Maass |author7=M. A. Salinger |author8=H. E. Stanley |title=Scaling behaviour in the growth of companies  |journal=Nature |volume=379 |page=804 |year=1996| url=http://havlin.biu.ac.il/Publications.php?keyword=Scaling+behaviour+in+the+growth+of+companies&year=*&match=all |doi=10.1038/379804a0 |issue=6568|bibcode = 1996Natur.379..804S |s2cid=4361375 }}</ref><ref>{{cite journal |author1=K. Yamasaki |author2=L. Muchnik |author3=S. Havlin |author4=A. Bunde |author5=H.E. Stanley |title=Scaling and memory in volatility return intervals in financial markets |journal=PNAS |volume=102 |pages=9424–8  |year=2005| url=http://havlin.biu.ac.il/Publications.php?keyword=Scaling+and+memory+in+volatility+return+intervals+in+financial+markets&year=*&match=all |doi=10.1073/pnas.0502613102 |pmid=15980152 |issue=26 |pmc=1166612|bibcode = 2005PNAS..102.9424Y }}</ref>
 
Econophysics is having some impacts on the more applied field of [[quantitative finance]], whose scope and aims significantly differ from those of economic theory. Various econophysicists have introduced models for price fluctuations in [[physics of financial markets]] or original points of view on established models.<ref name="autogenerated2003"/><ref>{{cite journal |author=Enrico Scalas |title=The application of continuous-time random walks in finance and economics |journal=Physica A |volume=362 |pages=225–239 |year=2006 |doi=10.1016/j.physa.2005.11.024|bibcode = 2006PhyA..362..225S |issue=2 }}</ref><ref>{{cite journal |author1=Y. Shapira |author2=Y. Berman |author3=E. Ben-Jacob |title=Modelling the short term herding behaviour of stock markets |journal=New Journal of Physics |volume=16 |issue=5 |year=2014 | doi= 10.1088/1367-2630/16/5/053040|bibcode = 2014NJPh...16e3040S |page=053040|doi-access=free }}</ref> Also several scaling laws have been found in various economic data.<ref>{{cite journal |author1=Y. Liu |author2=P. Gopikrishnan |author3=P. Cizeau |author4=M. Meyer |author5=C.-K. Peng |author6=H. E. Stanley |title=Statistical properties of the volatility of price fluctuations |year=1999| journal=[[Physical Review E]]| volume=60| issue=2|pages=1390–400 | doi= 10.1103/PhysRevE.60.1390|pmid=11969899 |arxiv = cond-mat/9903369 |bibcode = 1999PhRvE..60.1390L |citeseerx=10.1.1.241.9346 |s2cid=7512788 }}</ref><ref>{{cite journal |author1=M. H. R. Stanley |author2=L. A. N. Amaral |author3=S. V. Buldyrev |author4=S. Havlin |author5=H. Leschhorn |author6=P. Maass |author7=M. A. Salinger |author8=H. E. Stanley |title=Scaling behaviour in the growth of companies  |journal=Nature |volume=379 |page=804 |year=1996| url=http://havlin.biu.ac.il/Publications.php?keyword=Scaling+behaviour+in+the+growth+of+companies&year=*&match=all |doi=10.1038/379804a0 |issue=6568|bibcode = 1996Natur.379..804S |s2cid=4361375 }}</ref><ref>{{cite journal |author1=K. Yamasaki |author2=L. Muchnik |author3=S. Havlin |author4=A. Bunde |author5=H.E. Stanley |title=Scaling and memory in volatility return intervals in financial markets |journal=PNAS |volume=102 |pages=9424–8  |year=2005| url=http://havlin.biu.ac.il/Publications.php?keyword=Scaling+and+memory+in+volatility+return+intervals+in+financial+markets&year=*&match=all |doi=10.1073/pnas.0502613102 |pmid=15980152 |issue=26 |pmc=1166612|bibcode = 2005PNAS..102.9424Y }}</ref>
  −
      
==Main results==
 
==Main results==
307

个编辑