For many algorithms the size of the integers that are used during a computation is not bounded, and it is not realistic to consider that arithmetic operations take a constant time. Therefore, the time complexity, generally called bit complexity in this context, may be much larger than the arithmetic complexity. For example, the arithmetic complexity of the computation of the determinant of a integer matrix is <math>O(n^3)</math> for the usual algorithms (Gaussian elimination). The bit complexity of the same algorithms is exponential in , because the size of the coefficients may grow exponentially during the computation. On the other hand, if these algorithms are coupled with multi-modular arithmetic, the bit complexity may be reduced to soft O notation|. | For many algorithms the size of the integers that are used during a computation is not bounded, and it is not realistic to consider that arithmetic operations take a constant time. Therefore, the time complexity, generally called bit complexity in this context, may be much larger than the arithmetic complexity. For example, the arithmetic complexity of the computation of the determinant of a integer matrix is <math>O(n^3)</math> for the usual algorithms (Gaussian elimination). The bit complexity of the same algorithms is exponential in , because the size of the coefficients may grow exponentially during the computation. On the other hand, if these algorithms are coupled with multi-modular arithmetic, the bit complexity may be reduced to soft O notation|. |