更改

删除2字节 、 2021年2月6日 (六) 18:58
第438行: 第438行:  
* The '''Scalable Optimal Bayesian Classification'''<ref name=":bmdl">Hajiramezanali, E. & Imani, M. & Braga-Neto, U. & Qian, X. & Dougherty, E.. Scalable Optimal Bayesian Classification of Single-Cell Trajectories under Regulatory Model Uncertainty.  ACMBCB'18. https://dl.acm.org/citation.cfm?id=3233689</ref>  developed an optimal classification of trajectories accounting for potential model uncertainty and also proposed a particle-based trajectory classification that is highly scalable for large networks with much lower complexity than the optimal solution.
 
* The '''Scalable Optimal Bayesian Classification'''<ref name=":bmdl">Hajiramezanali, E. & Imani, M. & Braga-Neto, U. & Qian, X. & Dougherty, E.. Scalable Optimal Bayesian Classification of Single-Cell Trajectories under Regulatory Model Uncertainty.  ACMBCB'18. https://dl.acm.org/citation.cfm?id=3233689</ref>  developed an optimal classification of trajectories accounting for potential model uncertainty and also proposed a particle-based trajectory classification that is highly scalable for large networks with much lower complexity than the optimal solution.
   −
'''<font color="#FF8000">可伸缩的最佳贝叶斯分类 Scalable Optimal Bayesian Classification </font>''' <ref name=":bmdl">Hajiramezanali, E. & Imani, M. & Braga-Neto, U. & Qian, X. & Dougherty, E..可伸缩的最佳贝叶斯算法管制模型不确定性下的单细胞弹道分类。 ACMBCB'18. https://dl.acm.org/citation.cfm?id=3233689</ref>开发了考虑潜在模型不确定性的轨迹的最佳分类,并提出了基于粒子的轨迹分类,该分类对于具有许多功能的大型网络具有高度可扩展性低于最佳解决方案的复杂性。
+
'''<font color="#FF8000">可伸缩的最佳贝叶斯分类 Scalable Optimal Bayesian Classification </font>''' <ref name=":bmdl">Hajiramezanali, E. & Imani, M. & Braga-Neto, U. & Qian, X. & Dougherty, E.. Scalable Optimal Bayesian Classification of Single-Cell Trajectories under Regulatory Model Uncertainty.  ACMBCB'18. https://dl.acm.org/citation.cfm?id=3233689</ref>开发了一种考虑潜在模型不确定性的轨迹最优分类,还提出了一种基于粒子的轨迹分类,对于大型网络具有高度的可扩展性,复杂度比最优解低得多。
    
== See also ==
 
== See also ==
274

个编辑