更改

添加548字节 、 2021年2月7日 (日) 19:16
无编辑摘要
第12行: 第12行:       −
Kolmogorov–Smirnov检验经过修改以后可以作为'''<font color="#ff8000">拟合优度检验 goodness of fit test</font>'''。在测试分布正态性的特殊情况下,将样本先标准化再与标准正态分布进行比较。这相当于将参考分布的均值和方差设置为与样本估计值相等。显然,使用这些值和方差来定义特定参考分布会更改检验统计量的零分布(请参阅使用估算参数进行检验)。各种研究发现,即使采用这种校正形式,该测试也不能像夏皮罗一威尔克 Shapiro-Wilk检验或安德森·达林 Anderson-Darling检验那样有效地检验正态性。当然,这些检验方法也有其自身的缺点。例如,Shapiro–Wilk检验在具有许多相同值的样本中效果并不好。
+
Kolmogorov–Smirnov检验经过修改以后可以作为'''<font color="#ff8000">拟合优度检验 goodness of fit test</font>'''。在测试分布正态性的特殊情况下,将样本先标准化再与标准正态分布进行比较。这相当于将参考分布的均值和方差设置为与样本估计值相等。显然,使用这些值和方差来定义特定参考分布会更改检验统计量的零分布(请参阅使用估算参数进行检验)。各种研究发现,即使采用这种校正形式,该测试也不能像夏皮罗一威尔克 Shapiro-Wilk检验或安德森·达林 Anderson-Darling检验那样有效地检验正态性。当然,这些检验方法也有其自身的缺点。例如,Shapiro–Wilk检验在具有许多相同值的样本中效果并不好。<ref>{{cite journal
 +
| first = M. A. | last = Stephens | year = 1974 | title = EDF Statistics for Goodness of Fit and Some Comparisons | journal = Journal of the American Statistical Association | volume = 69 | issue = 347| pages = 730–737 | jstor =2286009 | doi = 10.2307/2286009 }}</ref>
      第45行: 第46行:       −
其中<math>B(t)</math>是布朗 Brownian桥。K的累积分布函数为
+
其中<math>B(t)</math>是'''布朗桥 Brownian bridge'''。K的累积分布函数为:<ref>{{Cite journal |vauthors=Marsaglia G, Tsang WW, Wang J |year=2003 |title=Evaluating Kolmogorov's Distribution |journal=Journal of Statistical Software |volume=8 |issue=18 |pages=1–4 |doi=10.18637/jss.v008.i18 |doi-access=free }}</ref>
     
7,129

个编辑