更改

删除39字节 、 2021年2月9日 (二) 16:15
第554行: 第554行:  
当一个系统的'''<font color="#ff8000">宏观 Macroscopic</font>'''热观测值不再随时间变化时,就会出现热平衡。例如,一种'''<font color="#ff8000">分布函数 Distribution Function</font>'''稳定到一个特定的'''<font color="#ff8000">麦克斯韦-波兹曼分布 Maxwell–Boltzmann distribution</font>'''的'''<font color="#ff8000">理想气体 Ideal Gas</font>'''即处于热平衡状态。这个结果可以用单一的'''<font color="#ff8000">温度 Temperature</font>'''和'''<font color="#ff8000">压力 Pressure</font>'''来描述整个系统。对于一个孤立的物体来说,在达到热平衡之前达到力学平衡是很可能的,但是最终,所有方面的平衡,包括热平衡,对于热力学平衡来说都是必要的。
 
当一个系统的'''<font color="#ff8000">宏观 Macroscopic</font>'''热观测值不再随时间变化时,就会出现热平衡。例如,一种'''<font color="#ff8000">分布函数 Distribution Function</font>'''稳定到一个特定的'''<font color="#ff8000">麦克斯韦-波兹曼分布 Maxwell–Boltzmann distribution</font>'''的'''<font color="#ff8000">理想气体 Ideal Gas</font>'''即处于热平衡状态。这个结果可以用单一的'''<font color="#ff8000">温度 Temperature</font>'''和'''<font color="#ff8000">压力 Pressure</font>'''来描述整个系统。对于一个孤立的物体来说,在达到热平衡之前达到力学平衡是很可能的,但是最终,所有方面的平衡,包括热平衡,对于热力学平衡来说都是必要的。
   −
==Non-equilibrium==
+
==Non-equilibrium 非平衡==
非平衡
+
 
 
{{Main|Non-equilibrium thermodynamics}}
 
{{Main|Non-equilibrium thermodynamics}}
   第566行: 第566行:  
A system's internal state of thermodynamic equilibrium should be distinguished from a "stationary state" in which thermodynamic parameters are unchanging in time but the system is not isolated, so that there are, into and out of the system, non-zero macroscopic fluxes which are constant in time.<ref>de Groot, S.R., Mazur, P. (1962), p. 43.</ref>
 
A system's internal state of thermodynamic equilibrium should be distinguished from a "stationary state" in which thermodynamic parameters are unchanging in time but the system is not isolated, so that there are, into and out of the system, non-zero macroscopic fluxes which are constant in time.<ref>de Groot, S.R., Mazur, P. (1962), p. 43.</ref>
   −
一个不孤立的系统的热力学平衡内部状态应该区别于一个在时间上不变的热力学参数的“定态”,因此在系统内外有非零的宏观流动,这些流动在时间上是常数
+
一个系统内部状态的热力学平衡应该区别于一个非孤立系统的定态,后者的热力学参数在时间上不变,但是在系统内外有非零的宏观流,这些流在时间上是常数。
    
Non-equilibrium thermodynamics is a branch of thermodynamics that deals with systems that are not in thermodynamic equilibrium. Most systems found in nature are not in thermodynamic equilibrium because they are changing or can be triggered to change over time, and are continuously and discontinuously subject to flux of matter and energy to and from other systems. The thermodynamic study of non-equilibrium systems requires more general concepts than are dealt with by equilibrium thermodynamics. Many natural systems still today remain beyond the scope of currently known macroscopic thermodynamic methods.
 
Non-equilibrium thermodynamics is a branch of thermodynamics that deals with systems that are not in thermodynamic equilibrium. Most systems found in nature are not in thermodynamic equilibrium because they are changing or can be triggered to change over time, and are continuously and discontinuously subject to flux of matter and energy to and from other systems. The thermodynamic study of non-equilibrium systems requires more general concepts than are dealt with by equilibrium thermodynamics. Many natural systems still today remain beyond the scope of currently known macroscopic thermodynamic methods.
   −
非平衡热力学是热力学的一个分支,研究的是非热力学平衡系统。大多数在自然界中发现的系统并不处于热力学平衡状态,因为它们正在变化或者可能随着时间而发生变化,并且不断地和不连续地受到来自其他系统的物质和能量流动的影响。非平衡系统的热力学研究比平衡态热力学研究需要更多的一般概念。许多自然系统今天仍然超出了目前已知的宏观热力学方法的范围。
+
非平衡热力学是热力学的一个分支,研究的是非热力学平衡系统。大多数在自然界中发现的系统并不处于热力学平衡状态,因为它们正在变化或者可能随着时间而发生变化,并且不断地和不连续地受到来自其他系统的物质和能量流动的影响。非平衡系统的热力学研究比平衡态热力学研究需要更一般的概念。许多自然系统在今天仍然超出了目前已知的宏观热力学方法的范围。
       
Laws governing systems which are far from equilibrium are also debatable. One of the guiding principles for these systems is the maximum entropy production principle.<ref>{{cite book|last1=Ziegler|first1=H.|title=An Introduction to Thermomechanics.|date=1983|location=North Holland, Amsterdam.}}</ref><ref>{{cite journal|last1=Onsager|first1=Lars|title=Reciprocal Relations in Irreversible Processes|journal=Phys. Rev.|date=1931|volume=37|issue=4|doi=10.1103/PhysRev.37.405|bibcode=1931PhRv...37..405O|pages=405–426|doi-access=free}}</ref>  It states that a non-equilibrium system evolves such as to maximize its entropy production.<ref>{{cite book|last1=Kleidon|first1=A.|last2=et.|first2=al.|title=Non-equilibrium Thermodynamics and the Production of Entropy.|date=2005|edition=Heidelberg: Springer.}}</ref><ref>{{cite journal|last1=Belkin|first1=Andrey|last2=et.|first2=al.|title=Self-Assembled Wiggling Nano-Structures and the Principle of Maximum Entropy Production|journal=Sci. Rep.|doi=10.1038/srep08323|bibcode=2015NatSR...5E8323B|pmc=4321171|pmid=25662746|volume=5|year=2015|page=8323}}</ref>
 
Laws governing systems which are far from equilibrium are also debatable. One of the guiding principles for these systems is the maximum entropy production principle.<ref>{{cite book|last1=Ziegler|first1=H.|title=An Introduction to Thermomechanics.|date=1983|location=North Holland, Amsterdam.}}</ref><ref>{{cite journal|last1=Onsager|first1=Lars|title=Reciprocal Relations in Irreversible Processes|journal=Phys. Rev.|date=1931|volume=37|issue=4|doi=10.1103/PhysRev.37.405|bibcode=1931PhRv...37..405O|pages=405–426|doi-access=free}}</ref>  It states that a non-equilibrium system evolves such as to maximize its entropy production.<ref>{{cite book|last1=Kleidon|first1=A.|last2=et.|first2=al.|title=Non-equilibrium Thermodynamics and the Production of Entropy.|date=2005|edition=Heidelberg: Springer.}}</ref><ref>{{cite journal|last1=Belkin|first1=Andrey|last2=et.|first2=al.|title=Self-Assembled Wiggling Nano-Structures and the Principle of Maximum Entropy Production|journal=Sci. Rep.|doi=10.1038/srep08323|bibcode=2015NatSR...5E8323B|pmc=4321171|pmid=25662746|volume=5|year=2015|page=8323}}</ref>
   −
定律规定远离平衡的系统也是有争议的。这些系统的指导原则之一就是最大产生熵原则。它指出,非平衡系统可以最大化其产生熵进行演化。
+
规定哪些系统远离平衡的规则也是有争议的。这些系统的指导原则之一就是最大熵产生原则。它指出,非平衡系统进行演化以最大化其熵产生。
 
  −
Topics in control theory
  −
 
  −
控制理论主题
      
==See also ==
 
==See also ==
320

个编辑