第23行: |
第23行: |
| | | |
| | | |
− | : <math>\Pr(G,S,R)=\Pr(G\mid S,R) \Pr(S\mid R)\Pr(R)</math>
| + | <math>\Pr(G,S,R)=\Pr(G\mid S,R) \Pr(S\mid R)\Pr(R)</math> |
| | | |
| | | |
第32行: |
第32行: |
| | | |
| | | |
− | : <math>\Pr(R=T\mid G=T) =\frac{\Pr(G=T,R=T)}{\Pr(G=T)} = \frac{\sum_{S \in \{T, F\}}\Pr(G=T, S,R=T)}{\sum_{S, R \in \{T, F\}} \Pr(G=T,S,R)}</math>
| + | <math>\Pr(R=T\mid G=T) =\frac{\Pr(G=T,R=T)}{\Pr(G=T)} = \frac{\sum_{S \in \{T, F\}}\Pr(G=T, S,R=T)}{\sum_{S, R \in \{T, F\}} \Pr(G=T,S,R)}</math> |
| | | |
| | | |
第38行: |
第38行: |
| | | |
| | | |
− | : <math>\begin{align}
| + | <math>\begin{align} |
| \Pr(G=T, S=T,R=T) & = \Pr(G=T\mid S=T,R=T)\Pr(S=T\mid R=T)\Pr(R=T) \\ | | \Pr(G=T, S=T,R=T) & = \Pr(G=T\mid S=T,R=T)\Pr(S=T\mid R=T)\Pr(R=T) \\ |
| & = 0.99 \times 0.01 \times 0.2 \\ | | & = 0.99 \times 0.01 \times 0.2 \\ |
第49行: |
第49行: |
| | | |
| | | |
− | : <math>\Pr(R=T\mid G=T) = \frac{ 0.00198_{TTT} + 0.1584_{TFT} }{ 0.00198_{TTT} + 0.288_{TTF} + 0.1584_{TFT} + 0.0_{TFF} } = \frac{891}{2491}\approx 35.77 \%.</math>
| + | <math>\Pr(R=T\mid G=T) = \frac{ 0.00198_{TTT} + 0.1584_{TFT} }{ 0.00198_{TTT} + 0.288_{TTF} + 0.1584_{TFT} + 0.0_{TFF} } = \frac{891}{2491}\approx 35.77 \%.</math> |
| | | |
| | | |
第55行: |
第55行: |
| | | |
| | | |
− | : <math>\Pr(S,R\mid\text{do}(G=T)) = \Pr(S\mid R) \Pr(R)</math>
| + | <math>\Pr(S,R\mid\text{do}(G=T)) = \Pr(S\mid R) \Pr(R)</math> |
| | | |
| | | |
第61行: |
第61行: |
| | | |
| | | |
− | : <math>\Pr(R\mid\text{do}(G=T)) = \Pr(R).</math>
| + | <math>\Pr(R\mid\text{do}(G=T)) = \Pr(R).</math> |
| | | |
| | | |
第67行: |
第67行: |
| | | |
| | | |
− | : <math>\Pr(R,G\mid\text{do}(S=T)) = \Pr(R)\Pr(G\mid R,S=T)</math>
| + | <math>\Pr(R,G\mid\text{do}(S=T)) = \Pr(R)\Pr(G\mid R,S=T)</math> |
| | | |
| | | |
第76行: |
第76行: |
| | | |
| | | |
− | : <math>\Pr(Y,Z\mid\text{do}(x)) = \frac{\Pr(Y,Z,X=x)}{\Pr(X=x\mid Z)}.</math>
| + | <math>\Pr(Y,Z\mid\text{do}(x)) = \frac{\Pr(Y,Z,X=x)}{\Pr(X=x\mid Z)}.</math> |
| | | |
| | | |
第165行: |
第165行: |
| | | |
| | | |
− | : <math>p(\theta,\varphi\mid x) \propto p(x\mid\theta)p(\theta\mid\varphi)p(\varphi).</math>
| + | <math>p(\theta,\varphi\mid x) \propto p(x\mid\theta)p(\theta\mid\varphi)p(\varphi).</math> |
| | | |
| | | |
第186行: |
第186行: |
| 假设我们想要估计<math>\theta_i</math>,一种方法是使用最大似然法。由于每个观测值是独立的,似然分解和最大似然估计很简单: | | 假设我们想要估计<math>\theta_i</math>,一种方法是使用最大似然法。由于每个观测值是独立的,似然分解和最大似然估计很简单: |
| | | |
− | : <math>
| + | <math> |
| \theta_i = x_i. | | \theta_i = x_i. |
| </math> | | </math> |
第194行: |
第194行: |
| | | |
| | | |
− | : <math>
| + | <math> |
| x_i \sim N(\theta_i,\sigma^2), | | x_i \sim N(\theta_i,\sigma^2), |
| </math> | | </math> |
− | : <math>
| + | <math> |
| \theta_i\sim N(\varphi, \tau^2), | | \theta_i\sim N(\varphi, \tau^2), |
| </math> | | </math> |
第222行: |
第222行: |
| | | |
| | | |
− | : <math> p (x) = \prod_{v \in V} p \left(x_v \,\big|\, x_{\operatorname{pa}(v)} \right) </math>
| + | <math> p (x) = \prod_{v \in V} p \left(x_v \,\big|\, x_{\operatorname{pa}(v)} \right) </math> |
| | | |
| | | |
第231行: |
第231行: |
| | | |
| | | |
− | : <math>\operatorname P(X_1=x_1, \ldots, X_n=x_n) = \prod_{v=1}^n \operatorname P \left(X_v=x_v \mid X_{v+1}=x_{v+1}, \ldots, X_n=x_n \right)</math>
| + | <math>\operatorname P(X_1=x_1, \ldots, X_n=x_n) = \prod_{v=1}^n \operatorname P \left(X_v=x_v \mid X_{v+1}=x_{v+1}, \ldots, X_n=x_n \right)</math> |
| | | |
| | | |
第237行: |
第237行: |
| | | |
| | | |
− | : <math>\operatorname P(X_1=x_1, \ldots, X_n=x_n) = \prod_{v=1}^n \operatorname P (X_v=x_v \mid X_j=x_j \text{ for each } X_j\, \text{ that is a parent of } X_v\, )</math>
| + | <math>\operatorname P(X_1=x_1, \ldots, X_n=x_n) = \prod_{v=1}^n \operatorname P (X_v=x_v \mid X_j=x_j \text{ for each } X_j\, \text{ that is a parent of } X_v\, )</math> |
| | | |
| | | |
第249行: |
第249行: |
| | | |
| | | |
− | :<math> X_v \perp\!\!\!\perp X_{V \,\smallsetminus\, \operatorname{de}(v)} \mid X_{\operatorname{pa}(v)} \quad\text{for all }v \in V</math>
| + | <math> X_v \perp\!\!\!\perp X_{V \,\smallsetminus\, \operatorname{de}(v)} \mid X_{\operatorname{pa}(v)} \quad\text{for all }v \in V</math> |
| | | |
| | | |
第258行: |
第258行: |
| | | |
| | | |
− | :<math>
| + | <math> |
| \begin{align} | | \begin{align} |
| & \operatorname P(X_v=x_v \mid X_i=x_i \text{ for each } X_i \text{ that is not a descendant of } X_v\, ) \\[6pt] | | & \operatorname P(X_v=x_v \mid X_i=x_i \text{ for each } X_i \text{ that is not a descendant of } X_v\, ) \\[6pt] |
第300行: |
第300行: |
| | | |
| | | |
− | : <math>X_u \perp\!\!\!\perp X_v \mid X_Z</math>
| + | <math>X_u \perp\!\!\!\perp X_v \mid X_Z</math> |
| | | |
| | | |