更改

添加3字节 、 2021年6月4日 (五) 12:08
第34行: 第34行:  
==== 获得自由能 ====
 
==== 获得自由能 ====
 
Bernal在 Miller-Urey 的实验中说,
 
Bernal在 Miller-Urey 的实验中说,
<blockquote>it is not enough to explain the formation of such molecules, what is necessary, is a physical-chemical explanation of the origins of these molecules that suggests the presence of suitable sources and sinks for free energy.
+
''<blockquote>it is not enough to explain the formation of such molecules, what is necessary, is a physical-chemical explanation of the origins of these molecules that suggests the presence of suitable sources and sinks for free energy.
    
仅仅解释这些分子的形成是不够的,需要的是对这些分子的起源作出物理-化学解释,表明存在合适的自由能源和自由能汇。<ref name="Bernal 1967"/>
 
仅仅解释这些分子的形成是不够的,需要的是对这些分子的起源作出物理-化学解释,表明存在合适的自由能源和自由能汇。<ref name="Bernal 1967"/>
   −
</blockquote>
+
</blockquote>''
      第83行: 第83行:     
然而,不可逆的过程,更不用说生命系统了,在这个角度下无法方便地进行分析,直到拉斯·昂萨格 Lars Onsager<ref>Onsager, L. (1931) Reciprocal Relations in Irreversible Processes I and II, ''Phys. Rev.'' 37, 405; 38, 2265 (1931)</ref>和后来的Ilya Prigogine<ref>Prigogine, I. (1967) An Introduction to the Thermodynamics of Irreversible Processes, Wiley, New York</ref>,发展了一种优雅的数学形式体系,用于处理广义化学势下物质的 "自组织"。这个形式体系后来被称为经典不可逆热动力学,1977年Prigogine被授予诺贝尔化学奖,"以表彰他对非平衡热动力学,特别是耗散结构理论的贡献"。Prigogine的分析表明,如果让一个系统在一个强加的外部势下演化,物质可以自发地组织起来(降低其熵),形成他所说的 "耗散结构",从而增加外部强加势的耗散(增强全局熵的产生)。此后,非平衡热动力学被成功地应用于生命系统的分析,从ATP<ref>{{cite journal | last1 = Dewar | first1 = R | last2 = Juretić | first2 = D. | last3 = Županović | first3 = P. | year = 2006 | title = The functional design of the rotary enzyme ATP synthase is consistent with maximum entropy production | journal = Chem. Phys. Lett. | volume = 430 | issue = 1| pages = 177–182 | doi=10.1016/j.cplett.2006.08.095| bibcode = 2006CPL...430..177D }}</ref>的生化生产到优化细菌代谢通路<ref>Unrean, P., Srienc, F. (2011) Metabolic networks evolve towards states of maximum entropy production, Metabolic Engineering 13, 666–673.</ref>以形成完整的生态系统。<ref>Zotin, A.I. (1984) "Bioenergetic trends of evolutionary progress of organisms", in: ''Thermodynamics and regulation of biological processes'' Lamprecht, I. and Zotin, A.I. (eds.), De Gruyter, Berlin, pp. 451–458.</ref><ref>{{cite journal | last1 = Schneider | first1 = E.D. | last2 = Kay | first2 = J.J. | year = 1994 | title = Life as a Manifestation of the Second Law of Thermodynamics | journal = Mathematical and Computer Modelling | volume = 19 | issue = 6–8| pages = 25–48 | doi=10.1016/0895-7177(94)90188-0| citeseerx = 10.1.1.36.8381 }}</ref><ref>{{cite journal | last1 = Michaelian | first1 = K. | year = 2005 | title = Thermodynamic stability of ecosystems  | journal = Journal of Theoretical Biology | volume = 237 | issue = 3| pages = 323–335 | bibcode = 2004APS..MAR.P9015M | doi=10.1016/j.jtbi.2005.04.019| pmid = 15978624 }}</ref>
 
然而,不可逆的过程,更不用说生命系统了,在这个角度下无法方便地进行分析,直到拉斯·昂萨格 Lars Onsager<ref>Onsager, L. (1931) Reciprocal Relations in Irreversible Processes I and II, ''Phys. Rev.'' 37, 405; 38, 2265 (1931)</ref>和后来的Ilya Prigogine<ref>Prigogine, I. (1967) An Introduction to the Thermodynamics of Irreversible Processes, Wiley, New York</ref>,发展了一种优雅的数学形式体系,用于处理广义化学势下物质的 "自组织"。这个形式体系后来被称为经典不可逆热动力学,1977年Prigogine被授予诺贝尔化学奖,"以表彰他对非平衡热动力学,特别是耗散结构理论的贡献"。Prigogine的分析表明,如果让一个系统在一个强加的外部势下演化,物质可以自发地组织起来(降低其熵),形成他所说的 "耗散结构",从而增加外部强加势的耗散(增强全局熵的产生)。此后,非平衡热动力学被成功地应用于生命系统的分析,从ATP<ref>{{cite journal | last1 = Dewar | first1 = R | last2 = Juretić | first2 = D. | last3 = Županović | first3 = P. | year = 2006 | title = The functional design of the rotary enzyme ATP synthase is consistent with maximum entropy production | journal = Chem. Phys. Lett. | volume = 430 | issue = 1| pages = 177–182 | doi=10.1016/j.cplett.2006.08.095| bibcode = 2006CPL...430..177D }}</ref>的生化生产到优化细菌代谢通路<ref>Unrean, P., Srienc, F. (2011) Metabolic networks evolve towards states of maximum entropy production, Metabolic Engineering 13, 666–673.</ref>以形成完整的生态系统。<ref>Zotin, A.I. (1984) "Bioenergetic trends of evolutionary progress of organisms", in: ''Thermodynamics and regulation of biological processes'' Lamprecht, I. and Zotin, A.I. (eds.), De Gruyter, Berlin, pp. 451–458.</ref><ref>{{cite journal | last1 = Schneider | first1 = E.D. | last2 = Kay | first2 = J.J. | year = 1994 | title = Life as a Manifestation of the Second Law of Thermodynamics | journal = Mathematical and Computer Modelling | volume = 19 | issue = 6–8| pages = 25–48 | doi=10.1016/0895-7177(94)90188-0| citeseerx = 10.1.1.36.8381 }}</ref><ref>{{cite journal | last1 = Michaelian | first1 = K. | year = 2005 | title = Thermodynamic stability of ecosystems  | journal = Journal of Theoretical Biology | volume = 237 | issue = 3| pages = 323–335 | bibcode = 2004APS..MAR.P9015M | doi=10.1016/j.jtbi.2005.04.019| pmid = 15978624 }}</ref>
      
==当前的生命,生物发生的结果:生物学==
 
==当前的生命,生物发生的结果:生物学==
7,129

个编辑