更改

删除13字节 、 2021年6月4日 (五) 12:14
第178行: 第178行:  
RNA世界的概念是由亚历山大·里奇Alexander Rich在1962年首次提出的<ref>{{cite journal |last1=Neveu |first1=Marc |last2=Kim |first2=Hyo-Joong |last3=Benner |first3=Steven A. |date=22 April 2013 |title=The 'Strong' RNA World Hypothesis: Fifty Years Old |journal=Astrobiology |volume=13 |issue=4 |pages=391–403 |bibcode=2013AsBio..13..391N |doi=10.1089/ast.2012.0868}}</ref> ,而这个术语则是由沃尔特·吉尔伯特Walter Gilbert在1986年创造的。<ref name="Cech2012">{{cite journal |last=Cech |first=Thomas R. |date=July 2012 |title=The RNA Worlds in Context |journal=Cold Spring Harbor Perspectives in Biology |volume=4 |issue=7 |page=a006742 |doi=10.1101/cshperspect.a006742 |pmc=3385955 |pmid=21441585}}</ref><ref>{{cite journal |last=Gilbert |first=Walter |date=20 February 1986 |title=Origin of life: The RNA world |journal=Nature |volume=319 |issue=6055 |page=618 |bibcode=1986Natur.319..618G |doi=10.1038/319618a0}}</ref> 在2020年3月,天文学家户谷友则 Tomonori Totani提出了一种统计方法,用于解释初始的活性RNA分子是如何在宇宙大爆炸后某个时间随机产生的。<ref name="UT-20200310">{{cite news |last=Gough |first=Evan |title=Life Could be Common Across the Universe, Just Not in Our Region |url=https://www.universetoday.com/145304/life-could-be-common-across-the-universe-just-not-in-our-region/ |date=10 March 2020 |work=Universe Today |accessdate=15 March 2020 }}</ref><ref name="SR-20200203">{{cite journal |last=Totani |first=Tomonori |title=Emergence of life in an inflationary universe |date=3 February 2020 |journal=Scientific Reports |volume=10 |number=1671 |pages=1671 |doi=10.1038/s41598-020-58060-0 |pmid=32015390 |pmc=6997386 |arxiv=1911.08092 |bibcode=2020NatSR..10.1671T |doi-access=free }}</ref>
 
RNA世界的概念是由亚历山大·里奇Alexander Rich在1962年首次提出的<ref>{{cite journal |last1=Neveu |first1=Marc |last2=Kim |first2=Hyo-Joong |last3=Benner |first3=Steven A. |date=22 April 2013 |title=The 'Strong' RNA World Hypothesis: Fifty Years Old |journal=Astrobiology |volume=13 |issue=4 |pages=391–403 |bibcode=2013AsBio..13..391N |doi=10.1089/ast.2012.0868}}</ref> ,而这个术语则是由沃尔特·吉尔伯特Walter Gilbert在1986年创造的。<ref name="Cech2012">{{cite journal |last=Cech |first=Thomas R. |date=July 2012 |title=The RNA Worlds in Context |journal=Cold Spring Harbor Perspectives in Biology |volume=4 |issue=7 |page=a006742 |doi=10.1101/cshperspect.a006742 |pmc=3385955 |pmid=21441585}}</ref><ref>{{cite journal |last=Gilbert |first=Walter |date=20 February 1986 |title=Origin of life: The RNA world |journal=Nature |volume=319 |issue=6055 |page=618 |bibcode=1986Natur.319..618G |doi=10.1038/319618a0}}</ref> 在2020年3月,天文学家户谷友则 Tomonori Totani提出了一种统计方法,用于解释初始的活性RNA分子是如何在宇宙大爆炸后某个时间随机产生的。<ref name="UT-20200310">{{cite news |last=Gough |first=Evan |title=Life Could be Common Across the Universe, Just Not in Our Region |url=https://www.universetoday.com/145304/life-could-be-common-across-the-universe-just-not-in-our-region/ |date=10 March 2020 |work=Universe Today |accessdate=15 March 2020 }}</ref><ref name="SR-20200203">{{cite journal |last=Totani |first=Tomonori |title=Emergence of life in an inflationary universe |date=3 February 2020 |journal=Scientific Reports |volume=10 |number=1671 |pages=1671 |doi=10.1038/s41598-020-58060-0 |pmid=32015390 |pmc=6997386 |arxiv=1911.08092 |bibcode=2020NatSR..10.1671T |doi-access=free }}</ref>
   −
===系统发育和最后的普遍共同祖先 Phylogeny and LUCA===
+
===系统发育和最后的普遍共同祖先===
      第188行: 第188行:     
2016年,一组355个基因被识别为可能存在于生活在地球上的所有生物的最后一个'''普遍共同祖先 Last Universal Common Ancestor(LUCA)'''中。对来自各种系统发育树的610万个原核生物蛋白编码基因进行了测序,从286,514个蛋白簇中识别了355个蛋白簇,它们很可能是LUCA共有的。结果说明LUCA是厌氧的、固定二氧化碳的、氢气依赖的且具有Wood-Ljungdahl通路的、固定氮气的和嗜热的。LUCA的生物化学中充斥着FeS簇和自由基反应机制。它的辅因子揭示了对过渡金属、黄素、S-腺苷甲硫氨酸、辅酶A、铁氧化还原蛋白、钼蝶呤、柯啉环和硒的依赖性。其遗传密码需要核苷修饰和S-腺苷甲硫氨酸依赖的甲基化"。
 
2016年,一组355个基因被识别为可能存在于生活在地球上的所有生物的最后一个'''普遍共同祖先 Last Universal Common Ancestor(LUCA)'''中。对来自各种系统发育树的610万个原核生物蛋白编码基因进行了测序,从286,514个蛋白簇中识别了355个蛋白簇,它们很可能是LUCA共有的。结果说明LUCA是厌氧的、固定二氧化碳的、氢气依赖的且具有Wood-Ljungdahl通路的、固定氮气的和嗜热的。LUCA的生物化学中充斥着FeS簇和自由基反应机制。它的辅因子揭示了对过渡金属、黄素、S-腺苷甲硫氨酸、辅酶A、铁氧化还原蛋白、钼蝶呤、柯啉环和硒的依赖性。其遗传密码需要核苷修饰和S-腺苷甲硫氨酸依赖的甲基化"。
 +
 +
<br>
    
===生物发生中的关键问题===
 
===生物发生中的关键问题===
7,129

个编辑