更改

删除3字节 、 2021年6月9日 (三) 23:06
第166行: 第166行:  
The results we have seen up to this point would never be measured in practice. It is impossible, by definition, to observe the effect of more than one treatment on a subject over a specific time period. Joe cannot both take the pill and not take the pill at the same time. Therefore, the data would look something like this:
 
The results we have seen up to this point would never be measured in practice. It is impossible, by definition, to observe the effect of more than one treatment on a subject over a specific time period. Joe cannot both take the pill and not take the pill at the same time. Therefore, the data would look something like this:
   −
到目前为止,我们所看到的结果永远无法在实践中衡量。根据定义,不可能在特定时间段内观察多种处理对受试者的影响。乔不能同时服用避孕药和不服用避孕药。因此,数据看起来像这样:
+
到目前为止,我们所看到的结果永远无法在实践中衡量。根据定义,不可能在特定时间段内观察多种处理对受试者的影响。乔不能同时服用药物和不服用药物。因此,数据看起来像这样:
    
{| class="wikitable" align="center"
 
{| class="wikitable" align="center"
第178行: 第178行:  
Assume that we have the following data:
 
Assume that we have the following data:
   −
问号是无法观察到的反馈。因果推断的基本问题<ref name="holland:causal86"/>是不可能直接观察因果效应。然而,这并不使因果推断成为不可能。某些技术和假设可以克服基本问题。
+
问号是无法观察到的反馈。因果推断的基本问题<ref name="holland:causal86"/>是不可能直接观测因果效应。然而,这并不是说因果推断是不可能的。某些技术和假设可以克服基本问题。
    
假设我们有以下数据:
 
假设我们有以下数据:
48

个编辑