更改

删除1,695字节 、 2021年6月10日 (四) 16:41
第61行: 第61行:     
在临床试验中,混杂因素是需要考虑的重要因素
 
在临床试验中,混杂因素是需要考虑的重要因素
  −
=== Simple randomization within strata ===
  −
  −
Stratified random sampling is useful and productive in situations requiring different weightings on specific strata. In this way, the researchers can manipulate the selection mechanisms from each strata to amplify or minimize the desired characteristics in the survey result.
  −
  −
分层随机抽样在特定地层需要不同权重的情况下是有用的和有效的。通过这种方式,研究人员可以操纵来自每个阶层的选择机制,以便在调查结果中放大或减少所需的特征。
  −
  −
Simple randomization is considered as the easiest method for allocating subjects in each stratum. Subjects are assigned to each group purely randomly for every assignment. Even though it is easy to conduct, simple randomization is commonly applied in strata that contain more than 100 samples since a small sampling size would make assignment unequal.<ref name=":0" />
  −
  −
  −
  −
Stratified randomization is helpful when researchers intend to seek for associations between two or more strata, as simple random sampling causes a larger chance of unequal representation of target groups. It is also useful when the researchers wish to eliminate confounders in observational studies as stratified random sampling allows the adjustments of covariances and the p-values for more accurate results.
  −
  −
当研究人员试图寻找两个或多个阶层之间的联系时,分层随机化是有帮助的,因为简单的随机抽样会导致目标群体代表性不平等的可能性更大。当研究人员希望在观察研究中消除混杂因素时,这也是有用的,因为分层随机抽样允许调整协方差和 p 值以获得更准确的结果。
      
=== Block randomization within strata ===
 
=== Block randomization within strata ===
387

个编辑