更改

添加725字节 、 2020年4月9日 (四) 23:31
第298行: 第298行:  
| arxiv = 1310.4377
 
| arxiv = 1310.4377
 
| bibcode = 2014PhRvX...4a1047P
 
| bibcode = 2014PhRvX...4a1047P
}}</ref>。 模型选择可以使用一些有原则的算法,例如最小描述长度(或贝叶斯模型选择<ref>{{cite arxiv|last=P. Peixoto|first=T.|date=2017|title=Bayesian stochastic blockmodeling|eprint=1705.10225|class=stat.ML}}</ref>)和似然比检定<ref>
+
}}</ref>。 模型选择可以使用一些有原则的算法,例如最小描述长度<ref>{{cite journal
 +
|author1=Martin Rosvall |author2=Carl T. Bergstrom | year = 2007
 +
| title = An information-theoretic framework for resolving community structure in complex networks
 +
| journal = Proceedings of the National Academy of Sciences of the United States of America
 +
| volume = 104
 +
| issue = 18
 +
| pages = 7327–7331
 +
| doi = 10.1073/pnas.0611034104
 +
| pmid=17452639
 +
| pmc=1855072
 +
| arxiv=physics/0612035| bibcode=2007PNAS..104.7327R}}</ref><ref>{{Cite journal|last=P. Peixoto|first=T.|date=2013|title=Parsimonious Module Inference in Large Networks|journal=Phys. Rev. Lett. |volume=110 |issue=14|page=148701|doi=10.1103/PhysRevLett.110.148701|pmid=25167049|bibcode=2013PhRvL.110n8701P|arxiv=1212.4794}}</ref>
 +
(或贝叶斯模型选择<ref>{{cite arxiv|last=P. Peixoto|first=T.|date=2017|title=Bayesian stochastic blockmodeling|eprint=1705.10225|class=stat.ML}}</ref>)和似然比检定<ref>
 
{{cite journal
 
{{cite journal
 
| last = Yan
 
| last = Yan
第388行: 第399行:  
}}
 
}}
 
</ref>
 
</ref>
      
===基于团结构的社团检测算法===
 
===基于团结构的社团检测算法===
7,129

个编辑