更改

删除92字节 、 2021年6月23日 (三) 13:03
第584行: 第584行:  
Life is thought to have emerged in the early RNA world when RNA chains began to express the basic conditions necessary for natural selection to operate as conceived by Darwin: heritability, variation of type, and competition for limited resources. Fitness of an RNA replicator (its per capita rate of increase) would likely be a function of adaptive capacities that were intrinsic (in the sense that they were determined by the nucleotide sequence) and the availability of resources. The three primary adaptive capacities may have been (1) the capacity to replicate with moderate fidelity (giving rise to both heritability and variation of type); (2) the capacity to avoid decay; and (3) the capacity to acquire and process resources. These capacities would have been determined initially by the folded configurations of the RNA replicators (see “Ribozyme”) that, in turn, would be encoded in their individual nucleotide sequences. Competitive success among different replicators would have depended on the relative values of these adaptive capacities.
 
Life is thought to have emerged in the early RNA world when RNA chains began to express the basic conditions necessary for natural selection to operate as conceived by Darwin: heritability, variation of type, and competition for limited resources. Fitness of an RNA replicator (its per capita rate of increase) would likely be a function of adaptive capacities that were intrinsic (in the sense that they were determined by the nucleotide sequence) and the availability of resources. The three primary adaptive capacities may have been (1) the capacity to replicate with moderate fidelity (giving rise to both heritability and variation of type); (2) the capacity to avoid decay; and (3) the capacity to acquire and process resources. These capacities would have been determined initially by the folded configurations of the RNA replicators (see “Ribozyme”) that, in turn, would be encoded in their individual nucleotide sequences. Competitive success among different replicators would have depended on the relative values of these adaptive capacities.
   −
生命被认为是在早期的 RNA 世界中出现的。那时 RNA 链展示出了达尔文所构想的自然选择运作的基本条件: 遗传、变异、和对有限资源的竞争。'''RNA 复制器 RNA Replicators'''的适应性(亦即RNA的平均增长率)可能是固有的''适应能力'' (在某种意义上说,它们是由核酸序列决定的)和''可用资源''的函数。
+
生命被认为是在早期的 RNA 世界中出现的。那时 RNA 链展示出了达尔文所构想的自然选择运作的基本条件: 遗传、变异、和对有限资源的竞争。'''RNA 复制器 RNA Replicators'''的固有的适应能力(亦即RNA的平均增长率,在某种意义上说,它们是由核酸序列决定的)和''可用资源''的函数。
--[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) 觉得原文是个半截句 the availability of resources。。。?[[用户:Qige96|Ricky]] 不。原文是“RNA适应性是适应能力和可用资源的函数(Fitness //..a function of adaptive capacities ... and the availability of resources)”
+
其中三种主要的适应能力可能是: (1)具有中等保真度的复制能力(同时具有遗传和变异的能力) ; (2)避免衰变的能力; (3)获取和加工资源的能力。这些能力最初是由 RNA 复制器的折叠结构决定的,而这些结构又反过来编码在各自的核酸序列中。不同复制器之间的竞争成败将取决于这些适应能力的相对值。
三种主要的适应能力可能是: (1)具有中等保真度的复制能力(同时具有遗传和变异的能力) ; (2)避免衰变的能力; (3)获取和加工资源的能力。这些能力最初是由 RNA 复制器(见'''“核酶 Ribozyme”''')的折叠结构决定的,而这些结构又反过来编码在各自的核酸序列中。不同复制器之间的竞争成功将取决于这些适应能力的相对值。
  −
 
      +
--[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) 觉得原文是个半截句 the availability of resources。。。?| [[用户:Qige96|Ricky]] 不。原文是“RNA适应性是适应能力和可用资源的函数(Fitness ... be a function of adaptive capacities ... and the availability of resources)”
      第595行: 第594行:  
Regarding causality in evolution Peter Corning observes:
 
Regarding causality in evolution Peter Corning observes:
   −
关于进化中的因果关系,Peter Corning 观察到:
+
关于进化中的因果关系,彼得·康宁观察到:
    
<blockquote>Synergistic effects of various kinds have played a major causal role in the evolutionary process generally and in the evolution of cooperation and complexity in particular... Natural selection is often portrayed as a “mechanism”, or is personified as a causal agency... In reality, the differential “selection” of a trait, or an adaptation, is a consequence of the functional effects it produces in relation to the survival and reproductive success of a given organism in a given environment. It is these functional effects that are ultimately responsible for the trans-generational continuities and changes in nature.{{nowrap|{{Harv|Corning|2002}}}}</blockquote>
 
<blockquote>Synergistic effects of various kinds have played a major causal role in the evolutionary process generally and in the evolution of cooperation and complexity in particular... Natural selection is often portrayed as a “mechanism”, or is personified as a causal agency... In reality, the differential “selection” of a trait, or an adaptation, is a consequence of the functional effects it produces in relation to the survival and reproductive success of a given organism in a given environment. It is these functional effects that are ultimately responsible for the trans-generational continuities and changes in nature.{{nowrap|{{Harv|Corning|2002}}}}</blockquote>
   −
<blockquote>Synergistic effects of various kinds have played a major causal role in the evolutionary process generally and in the evolution of cooperation and complexity in particular... Natural selection is often portrayed as a “mechanism”, or is personified as a causal agency... In reality, the differential “selection” of a trait, or an adaptation, is a consequence of the functional effects it produces in relation to the survival and reproductive success of a given organism in a given environment. It is these functional effects that are ultimately responsible for the trans-generational continuities and changes in nature.}}</blockquote>
+
Synergistic effects of various kinds have played a major causal role in the evolutionary process generally and in the evolution of cooperation and complexity in particular... Natural selection is often portrayed as a “mechanism”, or is personified as a causal agency... In reality, the differential “selection” of a trait, or an adaptation, is a consequence of the functional effects it produces in relation to the survival and reproductive success of a given organism in a given environment. It is these functional effects that are ultimately responsible for the trans-generational continuities and changes in nature.}}
 
  −
一般来说,各种协同作用在进化过程中,特别是在合作和复杂性的进化中起着重要的因果作用,自然选择通常被描述为一种“机制”,或者被人格化为一种因果代理。实际上,对某一特性或适应性的差异化“选择”,是它对特定环境中特定生物体生存和繁殖成功所产生的功能性影响的结果。正是这些功能性效应最终导致了'''跨代连续性 Trans-generational Continuities'''和自然界的变化。[} / blockquote
      +
一般来说,各种协同作用在进化过程中,特别是在合作和复杂性的进化中起着重要的因果作用,自然选择通常被描述为一种“机制”,或者被人格化为一种因果代理。实际上,对某一特性或适应性的差异化“选择”,是这些特性所产生的''功能性效应''使得特定环境中特定生物体生存和繁殖的成功。正是这些功能性效应最终导致了'''跨代连续性 Trans-generational Continuities'''和自然界的变化。
    +
</blockquote>
      第611行: 第610行:  
Per his definition of emergence, Corning also addresses emergence and evolution:
 
Per his definition of emergence, Corning also addresses emergence and evolution:
   −
根据其对涌现的定义,Corning 还提到了“涌现”和“进化” :
+
根据其对涌现的定义,康宁还提到了“涌现”和“进化” :
 +
 
 +
<blockquote>[In] evolutionary processes, causation is iterative; effects are also causes. And this is equally true of the synergistic effects produced by emergent systems. In other words, emergence itself... has been the underlying cause of the evolution of emergent phenomena in biological evolution; it is the synergies produced by organized systems that are the key.{{nowrap|{{Harv|Corning|2002}}}}
   −
<blockquote>[In] evolutionary processes, causation is iterative; effects are also causes. And this is equally true of the synergistic effects produced by emergent systems. In other words, emergence itself... has been the underlying cause of the evolution of emergent phenomena in biological evolution; it is the synergies produced by organized systems that are the key.{{nowrap|{{Harv|Corning|2002}}}}</blockquote>
+
[In] evolutionary processes, causation is iterative; effects are also causes. And this is equally true of the synergistic effects produced by emergent systems. In other words, emergence itself... has been the underlying cause of the evolution of emergent phenomena in biological evolution; it is the synergies produced by organized systems that are the key.}}
   −
<blockquote>[In] evolutionary processes, causation is iterative; effects are also causes. And this is equally true of the synergistic effects produced by emergent systems. In other words, emergence itself... has been the underlying cause of the evolution of emergent phenomena in biological evolution; it is the synergies produced by organized systems that are the key.}}</blockquote>
+
在进化过程中,因果关系是迭代的,结果同时也是原因。这同样适用于由涌现系统产生的'''协同效应 Synergistic Effects'''。换句话说,涌现本身是生物进化中涌现现象的根本原因。有组织的系统产生的协同增效作用才是进化的关键。
   −
在进化过程中,因果关系是迭代的; 结果也是原因。这同样适用于由涌现系统产生的'''协同效应 Synergistic Effects'''。换句话说,涌现本身是生物进化中涌现现象的根本原因; 有组织的系统产生的协同增效作用才是进化的关键。
+
--[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) (进化的)是自己加的不知是否合适
--[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) (进化的)是自己加的不知是否合适
+
</blockquote>
[} / blockquote
       
370

个编辑