更改

删除84字节 、 2021年6月28日 (一) 22:28
过匹配那儿不太熟悉,需进一步审阅
第3行: 第3行:  
|description='通过在观察研究或准实验研究中比较已处理和未处理的单元,以评估处理的效果
 
|description='通过在观察研究或准实验研究中比较已处理和未处理的单元,以评估处理的效果
 
}}
 
}}
'''匹配(Matching)是'''在'''<font color="#ff8000">观察研究(Observational Study)</font>'''或'''<font color="#ff8000">准实验研究(Quasi-experiment)</font>'''(即'''<font color="#ff8000">处理(Treatment)</font>'''是非随机分配的)中,通过比较已接受处理和未接受处理的个体(unit),以评估处理效应的一种统计技术。匹配的目标是,对每个处理组的个体,找到一个(或多个)具有相似可观察特征的控制组(即未接受处理组)的个体,以评估处理效应。通过将处理组个体与相似的控制组个体进行匹配,匹配后的处理组个体与控制组个体的结果可直接比较,从而可以减少混杂效应带来的偏差,评估处理效应。<ref>{{cite journal | doi=10.2307/2529684 | last=Rubin | first=Donald B. | title=Matching to Remove Bias in Observational Studies | journal=Biometrics | volume=29 | issue=1 | year=1973 | pages=159–183 | jstor=2529684}}</ref><ref>{{cite journal | title=On Stratification, Grouping and Matching | last=Anderson | first=Dallas W. |author2=Kish, Leslie |author3=Cornell, Richard G.  | journal=Scandinavian Journal of Statistics | volume=7 | issue=2 | year=1980 | pages=61–66 | jstor=4615774}}</ref><ref>{{cite journal | doi=10.2307/2530417 | title=Matching in Epidemiologic Studies: Validity and Efficiency Considerations | last=Kupper | first=Lawrence L. |author2=Karon, John M. |author3=Kleinbaum, David G. |author4=Morgenstern, Hal |author5= Lewis, Donald K.  | journal=Biometrics | volume=37 | issue=2 | year=1981 | pages=271–291 | jstor=2530417 | pmid=7272415| citeseerx=10.1.1.154.1197 }}</ref>'''<font color="#ff8000"> 倾向性得分匹配(Propensity Score Matching)</font>''',一种早期的匹配技术,是作为'''<font color="#ff8000">鲁宾因果模型(Rubin Causal Model</font>''')'''<font color="#ff8000"><ref name="Rosenbaum Rubin">{{cite journal |last1=Rosenbaum |first1=Paul R. |last2=Rubin |first2=Donald B. |title=The Central Role of the Propensity Score in Observational Studies for Causal Effects |journal=Biometrika |year=1983 |volume=70 |issue=1 |pages=41–55 |doi=10.1093/biomet/70.1.41 |doi-access=free }}</ref></font>'''的一部分发展起来的。它已被证明会增加模型依赖性、偏差、降低估计的效率和检验的功效('''<font color="#32cd32">power) </font>''',与其他匹配方法相比不再推荐使用。<ref>{{Cite journal|last1=King|first1=Gary|last2=Nielsen|first2=Richard|date=October 2019|title=Why Propensity Scores Should Not Be Used for Matching|url=https://www.cambridge.org/core/product/identifier/S1047198719000111/type/journal_article|journal=Political Analysis|language=en|volume=27|issue=4|pages=435–454|doi=10.1017/pan.2019.11|issn=1047-1987|doi-access=free}}</ref>
+
'''匹配(Matching)是'''在'''<font color="#ff8000">观察研究(Observational Study)</font>'''或'''<font color="#ff8000">准实验研究(Quasi-experiment)</font>'''(即'''<font color="#ff8000">处理(Treatment)</font>'''是非随机分配的)中,通过比较已接受处理和未接受处理的个体(unit),以评估处理效应的一种统计技术。匹配的目标是,对每个处理组的个体,找到一个(或多个)具有相似可观察特征的控制组(即未接受处理组)的个体,以评估处理效应。匹配方法通过将处理组个体与相似的控制组个体进行匹配,可以减少混杂因素带来的偏差,使得处理组与控制组的结果(outcome)可直接比较,从而估计出处理效应。<ref>{{cite journal | doi=10.2307/2529684 | last=Rubin | first=Donald B. | title=Matching to Remove Bias in Observational Studies | journal=Biometrics | volume=29 | issue=1 | year=1973 | pages=159–183 | jstor=2529684}}</ref><ref>{{cite journal | title=On Stratification, Grouping and Matching | last=Anderson | first=Dallas W. |author2=Kish, Leslie |author3=Cornell, Richard G.  | journal=Scandinavian Journal of Statistics | volume=7 | issue=2 | year=1980 | pages=61–66 | jstor=4615774}}</ref><ref>{{cite journal | doi=10.2307/2530417 | title=Matching in Epidemiologic Studies: Validity and Efficiency Considerations | last=Kupper | first=Lawrence L. |author2=Karon, John M. |author3=Kleinbaum, David G. |author4=Morgenstern, Hal |author5= Lewis, Donald K.  | journal=Biometrics | volume=37 | issue=2 | year=1981 | pages=271–291 | jstor=2530417 | pmid=7272415| citeseerx=10.1.1.154.1197 }}</ref>'''<font color="#ff8000"> 倾向性得分匹配(Propensity Score Matching)</font>''',一种早期的匹配技术,是作为'''<font color="#ff8000">鲁宾因果模型(Rubin Causal Model</font>''')'''<font color="#ff8000"><ref name="Rosenbaum Rubin">{{cite journal |last1=Rosenbaum |first1=Paul R. |last2=Rubin |first2=Donald B. |title=The Central Role of the Propensity Score in Observational Studies for Causal Effects |journal=Biometrika |year=1983 |volume=70 |issue=1 |pages=41–55 |doi=10.1093/biomet/70.1.41 |doi-access=free }}</ref></font>'''的一部分发展起来的,但已被证明会增加模型依赖性和偏差、降低估计效率和检验功效(power),与其他匹配方法相比不再推荐使用。<ref>{{Cite journal|last1=King|first1=Gary|last2=Nielsen|first2=Richard|date=October 2019|title=Why Propensity Scores Should Not Be Used for Matching|url=https://www.cambridge.org/core/product/identifier/S1047198719000111/type/journal_article|journal=Political Analysis|language=en|volume=27|issue=4|pages=435–454|doi=10.1017/pan.2019.11|issn=1047-1987|doi-access=free}}</ref>
    
匹配由'''<font color="#ff8000">唐纳德•鲁宾(Donald Rubin)</font>'''<ref name="Rosenbaum Rubin" />推动,在经济学中主要受到LaLonde<ref>{{cite journal | last = LaLonde | first = Robert J. | title = Evaluating the Econometric Evaluations of Training Programs with Experimental Data | journal = American Economic Review | volume = 76 | issue = 4 |year = 1986 | pages = 604–620 | jstor=1806062 }}</ref>的批评。LaLonde在一个实验中比较了处理效应估计和运用匹配方法产生的可比估计,表明匹配方法是有偏的。Dehejia和Wahba重新评估了LaLonde的批评,并指出匹配是一个很好的解决方案。<ref>{{cite journal | title = Causal Effects in Nonexperimental Studies: Reevaluating the Evaluation of Training Programs |first1 = R. H. |last1=Dehejia |first2 = S. |last2=Wahba |journal=Journal of the American Statistical Association |year=1999 |volume=94 |issue=448 |pages=1053–1062 |doi=10.1080/01621459.1999.10473858 |url = http://www.nber.org/papers/w6586.pdf }}</ref>政治学<ref>{{cite journal |last1=Arceneaux |first1=Kevin |first2=Alan S. |last2=Gerber |first3=Donald P. |last3=Green |year=2006 |title=Comparing Experimental and Matching Methods Using a Large-Scale Field Experiment on Voter Mobilization |journal=Political Analysis |volume=14 |issue=1 |pages=37–62 |doi=10.1093/pan/mpj001 }}</ref>和社会学期刊<ref>{{cite journal |last1=Arceneaux |first1=Kevin |first2=Alan S. |last2=Gerber |first3=Donald P. |last3=Green |year=2010 |title=A Cautionary Note on the Use of Matching to Estimate Causal Effects: An Empirical Example Comparing Matching Estimates to an Experimental Benchmark |journal=Sociological Methods & Research |volume=39 |issue=2 |pages=256–282 |doi=10.1177/0049124110378098}}</ref>上也提出了类似的批评。
 
匹配由'''<font color="#ff8000">唐纳德•鲁宾(Donald Rubin)</font>'''<ref name="Rosenbaum Rubin" />推动,在经济学中主要受到LaLonde<ref>{{cite journal | last = LaLonde | first = Robert J. | title = Evaluating the Econometric Evaluations of Training Programs with Experimental Data | journal = American Economic Review | volume = 76 | issue = 4 |year = 1986 | pages = 604–620 | jstor=1806062 }}</ref>的批评。LaLonde在一个实验中比较了处理效应估计和运用匹配方法产生的可比估计,表明匹配方法是有偏的。Dehejia和Wahba重新评估了LaLonde的批评,并指出匹配是一个很好的解决方案。<ref>{{cite journal | title = Causal Effects in Nonexperimental Studies: Reevaluating the Evaluation of Training Programs |first1 = R. H. |last1=Dehejia |first2 = S. |last2=Wahba |journal=Journal of the American Statistical Association |year=1999 |volume=94 |issue=448 |pages=1053–1062 |doi=10.1080/01621459.1999.10473858 |url = http://www.nber.org/papers/w6586.pdf }}</ref>政治学<ref>{{cite journal |last1=Arceneaux |first1=Kevin |first2=Alan S. |last2=Gerber |first3=Donald P. |last3=Green |year=2006 |title=Comparing Experimental and Matching Methods Using a Large-Scale Field Experiment on Voter Mobilization |journal=Political Analysis |volume=14 |issue=1 |pages=37–62 |doi=10.1093/pan/mpj001 }}</ref>和社会学期刊<ref>{{cite journal |last1=Arceneaux |first1=Kevin |first2=Alan S. |last2=Gerber |first3=Donald P. |last3=Green |year=2010 |title=A Cautionary Note on the Use of Matching to Estimate Causal Effects: An Empirical Example Comparing Matching Estimates to an Experimental Benchmark |journal=Sociological Methods & Research |volume=39 |issue=2 |pages=256–282 |doi=10.1177/0049124110378098}}</ref>上也提出了类似的批评。
 
== 分析 ==
 
== 分析 ==
   −
当感兴趣的结果是二元变量时,分析匹配数据最常用的工具是条件Logistic回归模型,因为它可以处理'''<font color="#32cd32">任意大小的层次和连续或二元处理变量(自变量)strata of arbitrary size and continuous or binary treatments (predictors)</font>''' ,并且可以控制协变量。在特定情况下,可以使用'''<font color="#32cd32"> 配对差异检验 paired difference test</font>'''、 McNemar 检验和 Cochran-Mantel-Haenzel 检验等更简单的检验。
+
当感兴趣的结果是二元变量时,分析匹配后的数据的最常用工具是条件Logistic回归模型,因为它可以处理'''<font color="#32cd32">任意多个层,连续或二元处理变量(或自变量)</font>''',并且可以控制协变量。在特定情况下,一些常用的检验方法可直接使用,如:'''<font color="#32cd32">配对差异检验(paired difference test)</font>'''、 McNemar 检验和 Cochran-Mantel-Haenzel 检验等。
    +
当感兴趣的结果是连续的,通过对'''<font color="#ff8000">平均处理效应(Average Treatment Effect)</font>'''进行估计。
   −
 
+
匹配也可用于在进行其他技术分析(例如回归分析)之前“预处理”样本。<ref>{{cite journal |last1=Ho |first1=Daniel E. |first2=Kosuke |last2=Imai |first3=Gary |last3=King |first4=Elizabeth A. |last4=Stuart |year=2007 |title=Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference |journal=Political Analysis |volume=15 |issue=3 |pages=199–236 |doi=10.1093/pan/mpl013 |doi-access=free }}</ref>
当感兴趣的结果是连续的,对'''<font color="#ff8000">平均处理效应 Average Treatment Effect </font>'''进行估计。
  −
 
  −
 
  −
 
  −
匹配也可用于在通过其他技术分析之前(例如回归分析)“预处理”样本。<ref>{{cite journal |last1=Ho |first1=Daniel E. |first2=Kosuke |last2=Imai |first3=Gary |last3=King |first4=Elizabeth A. |last4=Stuart |year=2007 |title=Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference |journal=Political Analysis |volume=15 |issue=3 |pages=199–236 |doi=10.1093/pan/mpl013 |doi-access=free }}</ref>
      
== 过匹配 ==
 
== 过匹配 ==
3

个编辑