更改

第264行: 第264行:  
[[File:Zentralfriedhof Vienna - Boltzmann.JPG|thumb|right|Boltzmann's grave in the [[Zentralfriedhof]], Vienna, with bust and entropy formula.|链接=Special:FilePath/Zentralfriedhof_Vienna_-_Boltzmann.JPG]]
 
[[File:Zentralfriedhof Vienna - Boltzmann.JPG|thumb|right|Boltzmann's grave in the [[Zentralfriedhof]], Vienna, with bust and entropy formula.|链接=Special:FilePath/Zentralfriedhof_Vienna_-_Boltzmann.JPG]]
 
The idea that the [[second law of thermodynamics]] or "entropy law" is a law of disorder (or that dynamically ordered states are "infinitely improbable") is due to Boltzmann's view of the second law of thermodynamics.
 
The idea that the [[second law of thermodynamics]] or "entropy law" is a law of disorder (or that dynamically ordered states are "infinitely improbable") is due to Boltzmann's view of the second law of thermodynamics.
 +
 +
波尔兹曼认为热力学第二定律或“熵定律”是无序定律(或动态有序状态是“无限不可能的”)。
    
In particular, it was Boltzmann's attempt to reduce it to a [[stochastic]] collision function, or law of probability following from the random collisions of mechanical particles. Following Maxwell,<ref>Maxwell, J. (1871). Theory of heat. London: Longmans, Green & Co.</ref> Boltzmann modeled gas molecules as colliding billiard balls in a box, noting that with each collision nonequilibrium velocity distributions (groups of molecules moving at the same speed and in the same direction) would become increasingly disordered leading to a final state of macroscopic uniformity and maximum microscopic disorder or the state of maximum entropy (where the macroscopic uniformity corresponds to the obliteration of all field potentials or gradients).<ref>Boltzmann, L. (1974). The second law of thermodynamics. Populare Schriften, Essay 3, address to a formal meeting of the Imperial Academy of Science, 29 May 1886, reprinted in Ludwig Boltzmann, Theoretical physics and philosophical problem, S. G. Brush (Trans.). Boston: Reidel. (Original work published 1886)</ref> The second law, he argued, was thus simply the result of the fact that in a world of mechanically colliding particles disordered states are the most probable. Because there are so many more possible disordered states than ordered ones, a system will almost always be found either in the state of maximum disorder – the macrostate with the greatest number of accessible microstates such as a gas in a box at equilibrium – or moving towards it. A dynamically ordered state, one with molecules moving "at the same speed and in the same direction", Boltzmann concluded, is thus "the most improbable case conceivable...an infinitely improbable configuration of energy."<ref>Boltzmann, L. (1974). The second law of thermodynamics. p. 20</ref>
 
In particular, it was Boltzmann's attempt to reduce it to a [[stochastic]] collision function, or law of probability following from the random collisions of mechanical particles. Following Maxwell,<ref>Maxwell, J. (1871). Theory of heat. London: Longmans, Green & Co.</ref> Boltzmann modeled gas molecules as colliding billiard balls in a box, noting that with each collision nonequilibrium velocity distributions (groups of molecules moving at the same speed and in the same direction) would become increasingly disordered leading to a final state of macroscopic uniformity and maximum microscopic disorder or the state of maximum entropy (where the macroscopic uniformity corresponds to the obliteration of all field potentials or gradients).<ref>Boltzmann, L. (1974). The second law of thermodynamics. Populare Schriften, Essay 3, address to a formal meeting of the Imperial Academy of Science, 29 May 1886, reprinted in Ludwig Boltzmann, Theoretical physics and philosophical problem, S. G. Brush (Trans.). Boston: Reidel. (Original work published 1886)</ref> The second law, he argued, was thus simply the result of the fact that in a world of mechanically colliding particles disordered states are the most probable. Because there are so many more possible disordered states than ordered ones, a system will almost always be found either in the state of maximum disorder – the macrostate with the greatest number of accessible microstates such as a gas in a box at equilibrium – or moving towards it. A dynamically ordered state, one with molecules moving "at the same speed and in the same direction", Boltzmann concluded, is thus "the most improbable case conceivable...an infinitely improbable configuration of energy."<ref>Boltzmann, L. (1974). The second law of thermodynamics. p. 20</ref>
 +
 +
特别是,玻尔兹曼试图将其简化为随机碰撞函数,或机械粒子随机碰撞后的概率定律。继麦克斯韦之后,玻尔兹曼把气体分子模拟成一个盒子里碰撞的台球,指出,每一次碰撞非平衡态速度分布(组分子移动的速度和方向相同)会越来越无序导致最终状态的宏观均匀性和最大微观障碍或最大熵(宏观均匀的状态对应消除所有场势或梯度)。因此,他认为,第二定律仅仅是这样一个事实的结果:在一个机械碰撞粒子的世界里,无序状态是最有可能的。因为可能的无序状态比有序状态要多得多,一个系统几乎总是会处于最大无序状态——具有最多可接近的微观状态的宏观状态,如处于平衡状态的盒子里的气体——或向最大无序状态移动。玻尔兹曼总结道,一个动态有序的状态,即分子以“相同的速度和相同的方向”运动,因此是“最不可思议的可能情况…… 一种无限不可能的能量配置。
    
Boltzmann accomplished the feat of showing that the second law of thermodynamics is only a statistical fact. The gradual disordering of energy is analogous to the disordering of an initially ordered [[pack of cards]] under repeated shuffling, and just as the cards will finally return to their original order if shuffled a gigantic number of times, so the entire universe must some-day regain, by pure chance, the state from which it first set out. (This optimistic coda to the idea of the dying universe becomes somewhat muted when one attempts to estimate the timeline which will probably elapse before it spontaneously occurs.)<ref>"[[Collier's Encyclopedia]]", Volume 19 Phyfe to Reni, "Physics", by David Park, p. 15</ref> The tendency for entropy increase seems to cause difficulty to beginners in thermodynamics, but is easy to understand from the standpoint of the theory of probability. Consider two ordinary [[dice]], with both sixes face up. After the dice are shaken, the chance of finding these two sixes face up is small (1 in 36); thus one can say that the random motion (the agitation) of the dice, like the chaotic collisions of molecules because of thermal energy, causes the less probable state to change to one that is more probable. With millions of dice, like the millions of atoms involved in thermodynamic calculations, the probability of their all being sixes becomes so vanishingly small that the system ''must'' move to one of the more probable states.<ref>"Collier's Encyclopedia", Volume 22 Sylt to Uruguay, Thermodynamics, by Leo Peters, p. 275</ref> However, mathematically the odds of all the dice results not being a pair sixes is also as hard as the ones of all of them being sixes{{Citation needed|date=January 2019}}, and since statistically the [[data]] tend to balance, one in every 36 pairs of dice will tend to be a pair of sixes, and the cards -when shuffled- will sometimes present a certain temporary sequence order even if in its whole the deck was disordered.
 
Boltzmann accomplished the feat of showing that the second law of thermodynamics is only a statistical fact. The gradual disordering of energy is analogous to the disordering of an initially ordered [[pack of cards]] under repeated shuffling, and just as the cards will finally return to their original order if shuffled a gigantic number of times, so the entire universe must some-day regain, by pure chance, the state from which it first set out. (This optimistic coda to the idea of the dying universe becomes somewhat muted when one attempts to estimate the timeline which will probably elapse before it spontaneously occurs.)<ref>"[[Collier's Encyclopedia]]", Volume 19 Phyfe to Reni, "Physics", by David Park, p. 15</ref> The tendency for entropy increase seems to cause difficulty to beginners in thermodynamics, but is easy to understand from the standpoint of the theory of probability. Consider two ordinary [[dice]], with both sixes face up. After the dice are shaken, the chance of finding these two sixes face up is small (1 in 36); thus one can say that the random motion (the agitation) of the dice, like the chaotic collisions of molecules because of thermal energy, causes the less probable state to change to one that is more probable. With millions of dice, like the millions of atoms involved in thermodynamic calculations, the probability of their all being sixes becomes so vanishingly small that the system ''must'' move to one of the more probable states.<ref>"Collier's Encyclopedia", Volume 22 Sylt to Uruguay, Thermodynamics, by Leo Peters, p. 275</ref> However, mathematically the odds of all the dice results not being a pair sixes is also as hard as the ones of all of them being sixes{{Citation needed|date=January 2019}}, and since statistically the [[data]] tend to balance, one in every 36 pairs of dice will tend to be a pair of sixes, and the cards -when shuffled- will sometimes present a certain temporary sequence order even if in its whole the deck was disordered.
596

个编辑