第1行: |
第1行: |
− | 此词条暂由彩云小译翻译,未经人工整理和审校,带来阅读不便,请见谅。{{short description|Area of mathematics}}
| + | {{#seo: |
− | | + | |keywords=分岔理论,退化点 |
− | | + | |description=在数学上,突变论是动力学系统研究里分岔理论的一个分支;而在几何学中,它也是奇点理论里的一个特殊情形。 |
| + | }} |
| | | |
| + | {{short description|Area of mathematics}} |
| {{Technical|date=September 2018}} | | {{Technical|date=September 2018}} |
− |
| |
− |
| |
− |
| |
| {{redirect|Catastrophic event||Catastrophe (disambiguation){{!}}Catastrophe}} | | {{redirect|Catastrophic event||Catastrophe (disambiguation){{!}}Catastrophe}} |
| | | |
− | | + | 在数学上,突变论是[[动力学系统]]研究里[[分岔理论]]的一个分支;而在几何学中,它也是[[奇点理论]]里的一个特殊情形。 |
− | | |
− | | |
− | | |
− | | |
− | | |
− | In [[mathematics]], '''catastrophe theory''' is a branch of [[bifurcation theory]] in the study of [[dynamical system]]s; it is also a particular special case of more general [[singularity theory]] in [[geometry]].
| |
− | | |
− | In mathematics, catastrophe theory is a branch of bifurcation theory in the study of dynamical systems; it is also a particular special case of more general singularity theory in geometry.
| |
− | | |
− | 在数学上,突变论是动力学系统研究里分岔理论的一个分支;而在几何学中,它也是奇点理论里的一个特殊情形。
| |
− | | |
− | | |
− | | |
− | | |
− | | |
− | Bifurcation theory studies and classifies phenomena characterized by sudden shifts in behavior arising from small changes in circumstances, analysing how the [[qualitative data|qualitative]] nature of equation solutions depends on the parameters that appear in the equation. This may lead to sudden and dramatic changes, for example the unpredictable timing and [[magnitude (mathematics)|magnitude]] of a [[landslide]].
| |
− | | |
− | Bifurcation theory studies and classifies phenomena characterized by sudden shifts in behavior arising from small changes in circumstances, analysing how the qualitative nature of equation solutions depends on the parameters that appear in the equation. This may lead to sudden and dramatic changes, for example the unpredictable timing and magnitude of a landslide.
| |
| | | |
| 分岔理论对环境中微小变化导致系统动力学行为发生突变的现象进行研究和分类,对动力学方程的解如何依赖方程中的参数进行定性分析。这可能会导致突然而剧烈的变化,例如,无法对时间和规模进行预测的滑坡现象。 | | 分岔理论对环境中微小变化导致系统动力学行为发生突变的现象进行研究和分类,对动力学方程的解如何依赖方程中的参数进行定性分析。这可能会导致突然而剧烈的变化,例如,无法对时间和规模进行预测的滑坡现象。 |
| | | |
− | | + | 突变论起源于20世纪60年代法国数学家René Thom的一系列工作。得益于Christopher Zeeman的努力,突变论在20世纪70年代变得非常流行。突变论考虑这样一种特殊情况:长期稳定的平衡可以由一个光滑的、定义明确的势函数([[李雅普诺夫函数]])的最小值确定。 |
− | | |
− | | |
− | | |
− | Catastrophe theory originated with the work of the French mathematician [[René Thom]] in the 1960s, and became very popular due to the efforts of [[Christopher Zeeman]] in the 1970s. It considers the special case where the long-run stable equilibrium can be identified as the minimum of a smooth, well-defined [[scalar potential|potential]] function ([[Lyapunov function]]).
| |
− | | |
− | Catastrophe theory originated with the work of the French mathematician René Thom in the 1960s, and became very popular due to the efforts of Christopher Zeeman in the 1970s. It considers the special case where the long-run stable equilibrium can be identified as the minimum of a smooth, well-defined potential function (Lyapunov function).
| |
− | | |
− | 突变论起源于20世纪60年代法国数学家René Thom的一系列工作。得益于Christopher Zeeman的努力,突变论在20世纪70年代变得非常流行。突变论考虑这样一种特殊情况:长期稳定的平衡可以由一个光滑的、定义明确的势函数(李雅普诺夫函数)的最小值确定。 | |
− | | |
− | | |
− | | |
− | | |
− | | |
− | Small changes in certain parameters of a nonlinear system can cause equilibria to appear or disappear, or to change from attracting to repelling and vice versa, leading to large and sudden changes of the behaviour of the system. However, examined in a larger parameter space, catastrophe theory reveals that such bifurcation points tend to occur as part of well-defined qualitative geometrical structures.
| |
− | | |
− | Small changes in certain parameters of a nonlinear system can cause equilibria to appear or disappear, or to change from attracting to repelling and vice versa, leading to large and sudden changes of the behaviour of the system. However, examined in a larger parameter space, catastrophe theory reveals that such bifurcation points tend to occur as part of well-defined qualitative geometrical structures.
| |
| | | |
| 非线性系统某些参数的微小变化可以导致平衡态的出现或消失,或者从吸引变为排斥,又或相反,从而导致系统行为产生巨大而突然的变化。然而,在较大的参数空间中,突变论揭示了这种分叉点往往作为定性几何结构的一部分出现。 | | 非线性系统某些参数的微小变化可以导致平衡态的出现或消失,或者从吸引变为排斥,又或相反,从而导致系统行为产生巨大而突然的变化。然而,在较大的参数空间中,突变论揭示了这种分叉点往往作为定性几何结构的一部分出现。 |
第53行: |
第18行: |
| | | |
| | | |
| + | == 基本的灾难 == |
| | | |
− |
| |
− | == Elementary catastrophes ==
| |
− |
| |
− | == Elementary catastrophes ==
| |
− |
| |
− | 基本的灾难
| |
| | | |
| Catastrophe theory analyzes ''degenerate critical points'' of the potential function — points where not just the first derivative, but one or more higher derivatives of the potential function are also zero. These are called the [[germ (mathematics)|germs]] of the catastrophe geometries. The degeneracy of these critical points can be ''unfolded'' by expanding the potential function as a [[Taylor series]] in small perturbations of the parameters. | | Catastrophe theory analyzes ''degenerate critical points'' of the potential function — points where not just the first derivative, but one or more higher derivatives of the potential function are also zero. These are called the [[germ (mathematics)|germs]] of the catastrophe geometries. The degeneracy of these critical points can be ''unfolded'' by expanding the potential function as a [[Taylor series]] in small perturbations of the parameters. |
第78行: |
第38行: |
| | | |
| | | |
− | | + | == 一个有效变量的势函数 == |
− | | |
− | == Potential functions of one active variable == | |
− | | |
− | == Potential functions of one active variable ==
| |
− | | |
− | 一个有效变量的势函数
| |
− | | |
− | | |
− | | |
− | | |
− | | |
| {{Confusing|reason=Equation parameters are not defined. What is the variable V?|date=March 2020}} | | {{Confusing|reason=Equation parameters are not defined. What is the variable V?|date=March 2020}} |
| | | |
| | | |
− | | + | === 折叠灾难 === |
− | === Fold catastrophe === | |
− | | |
− | === Fold catastrophe ===
| |
− | | |
− | 折叠灾难
| |
| | | |
| [[File:fold bifurcation.svg|frame|right|160px|Stable and unstable pair of extrema disappear at a fold bifurcation|链接=Special:FilePath/Fold_bifurcation.svg]] | | [[File:fold bifurcation.svg|frame|right|160px|Stable and unstable pair of extrema disappear at a fold bifurcation|链接=Special:FilePath/Fold_bifurcation.svg]] |
第121行: |
第65行: |
| | | |
| 在负值 a 时,势 v 有两个极值,一个是稳定的,一个是不稳定的。如果参数 a 缓慢增加,系统可以达到稳定的最小点。但在0时,稳定极值与不稳定极值相遇并湮灭。这就是分歧点。这儿不再有一个稳定解。如果一个物理系统经过一个折叠分叉,人们就会发现,当 a 到达0时,解的稳定性会突然丧失,系统也会突然转变为一个新的,非常不同的行为。参数 a 的这个分叉值有时被称为“引爆点”。 | | 在负值 a 时,势 v 有两个极值,一个是稳定的,一个是不稳定的。如果参数 a 缓慢增加,系统可以达到稳定的最小点。但在0时,稳定极值与不稳定极值相遇并湮灭。这就是分歧点。这儿不再有一个稳定解。如果一个物理系统经过一个折叠分叉,人们就会发现,当 a 到达0时,解的稳定性会突然丧失,系统也会突然转变为一个新的,非常不同的行为。参数 a 的这个分叉值有时被称为“引爆点”。 |
− |
| |
− |
| |
− |
| |
| | | |
| | | |
| {{clear}} | | {{clear}} |
| | | |
| + | === 尖点灾变 === |
| | | |
| | | |
− |
| |
− |
| |
− |
| |
− |
| |
− | === Cusp catastrophe ===
| |
− |
| |
− | === Cusp catastrophe ===
| |
− |
| |
− | 尖点灾变
| |
| | | |
| :<math>V = x^4 + ax^2 + bx \,</math> | | :<math>V = x^4 + ax^2 + bx \,</math> |
第145行: |
第78行: |
| | | |
| X ^ 4 + ax ^ 2 + bx ,/ math | | X ^ 4 + ax ^ 2 + bx ,/ math |
− |
| |
− |
| |
− |
| |
| | | |
| | | |
第162行: |
第92行: |
| | | |
| [[File:cusp catastrophe.svg|thumb|upright=1.5| 尖点突变图,显示 x 的曲线(棕色,红色)满足 dv / dx 0的参数(a,b) ,为参数 b 绘制的曲线连续变化,为参数 a 的几个值绘制的曲线(棕色,红色)。 | | [[File:cusp catastrophe.svg|thumb|upright=1.5| 尖点突变图,显示 x 的曲线(棕色,红色)满足 dv / dx 0的参数(a,b) ,为参数 b 绘制的曲线连续变化,为参数 a 的几个值绘制的曲线(棕色,红色)。 |
− |
| |
− |
| |
− |
| |
| | | |
| | | |
第191行: |
第118行: |
| | | |
| |} | | |} |
− |
| |
− |
| |
− |
| |
− |
| |
| | | |
| The cusp geometry is very common, when one explores what happens to a fold bifurcation if a second parameter, ''b'', is added to the control space. Varying the parameters, one finds that there is now a ''curve'' (blue) of points in (''a'',''b'') space where stability is lost, where the stable solution will suddenly jump to an alternate outcome. | | The cusp geometry is very common, when one explores what happens to a fold bifurcation if a second parameter, ''b'', is added to the control space. Varying the parameters, one finds that there is now a ''curve'' (blue) of points in (''a'',''b'') space where stability is lost, where the stable solution will suddenly jump to an alternate outcome. |
第201行: |
第124行: |
| | | |
| 当人们探索如果在控制空间中加入第二个参数 b,将会发生什么,尖点几何是非常常见的。通过改变参数,我们发现在(a,b)空间中存在一条点的曲线(蓝色) ,在这条曲线中解失去了稳定性,其突然跳跃到另一个结果。 | | 当人们探索如果在控制空间中加入第二个参数 b,将会发生什么,尖点几何是非常常见的。通过改变参数,我们发现在(a,b)空间中存在一条点的曲线(蓝色) ,在这条曲线中解失去了稳定性,其突然跳跃到另一个结果。 |
− |
| |
− |
| |
− |
| |
| | | |
| | | |
第298行: |
第218行: |
| 剩下的简单的灾难几何图形在比较中非常专业,在这里展示只是为了好奇的价值。 | | 剩下的简单的灾难几何图形在比较中非常专业,在这里展示只是为了好奇的价值。 |
| | | |
| + | === 燕尾蝶灾难 === |
| | | |
| | | |
− |
| |
− |
| |
− | === Swallowtail catastrophe ===
| |
− |
| |
− | === Swallowtail catastrophe ===
| |
− |
| |
− | 燕尾蝶灾难
| |
| | | |
| [[File:Smallow tail.jpg|thumb|right|160px|Swallowtail catastrophe surface|链接=Special:FilePath/Smallow_tail.jpg]] | | [[File:Smallow tail.jpg|thumb|right|160px|Swallowtail catastrophe surface|链接=Special:FilePath/Smallow_tail.jpg]] |
第341行: |
第255行: |
| | | |
| | | |
| + | === 蝴蝶灾难 === |
| | | |
| | | |
− |
| |
− | === Butterfly catastrophe ===
| |
− |
| |
− | === Butterfly catastrophe ===
| |
− |
| |
− | 蝴蝶灾难
| |
| | | |
| :<math>V = x^6 + ax^4 + bx^3 + cx^2 + dx \, </math> | | :<math>V = x^6 + ax^4 + bx^3 + cx^2 + dx \, </math> |
第389行: |
第298行: |
| | | |
| | | |
| + | === 双曲线脐点突变 === |
| | | |
| | | |
− |
| |
− | === Hyperbolic umbilic catastrophe ===
| |
− |
| |
− | === Hyperbolic umbilic catastrophe ===
| |
− |
| |
− | 双曲线脐点突变
| |
| | | |
| :<math>V = x^3 + y^3 + axy + bx +cy \, </math> | | :<math>V = x^3 + y^3 + axy + bx +cy \, </math> |
第404行: |
第308行: |
| 数学 v x ^ 3 + y ^ 3 + axy + bx + cy,/ math | | 数学 v x ^ 3 + y ^ 3 + axy + bx + cy,/ math |
| | | |
| + | === 椭圆脐灾变 === |
| | | |
| | | |
− |
| |
− |
| |
− | === Elliptic umbilic catastrophe ===
| |
− |
| |
− | === Elliptic umbilic catastrophe ===
| |
− |
| |
− | 椭圆脐灾变
| |
| | | |
| :<math>V = \frac{x^3}{3} - xy^2 + a(x^2+y^2) + bx + cy \, </math> | | :<math>V = \frac{x^3}{3} - xy^2 + a(x^2+y^2) + bx + cy \, </math> |
第420行: |
第318行: |
| 3}-xy ^ 2 + a (x ^ 2 + y ^ 2) + bx + cy,/ math | | 3}-xy ^ 2 + a (x ^ 2 + y ^ 2) + bx + cy,/ math |
| | | |
| + | === 抛物线脐点突变 === |
| | | |
| | | |
− |
| |
− |
| |
− | === Parabolic umbilic catastrophe ===
| |
− |
| |
− | === Parabolic umbilic catastrophe ===
| |
− |
| |
− | 抛物线脐点突变
| |
| | | |
| :<math>V = x^2y + y^4 + ax^2 + by^2 + cx + dy \, </math> | | :<math>V = x^2y + y^4 + ax^2 + by^2 + cx + dy \, </math> |
第439行: |
第331行: |
| | | |
| | | |
− | | + | ==阿诺德记数法== |
− | ==Arnold's notation== | |
− | | |
− | ==Arnold's notation==
| |
− | | |
− | 阿诺德记数法
| |
| | | |
| [[Vladimir Arnold]] gave the catastrophes the [[ADE classification]], due to a deep connection with [[simple Lie group]]s. | | [[Vladimir Arnold]] gave the catastrophes the [[ADE classification]], due to a deep connection with [[simple Lie group]]s. |
第514行: |
第401行: |
| 在奇点理论中有一些对象,它们对应于大多数其他简单的李群。 | | 在奇点理论中有一些对象,它们对应于大多数其他简单的李群。 |
| | | |
− | | + | == 参见 == |
− | | |
− | | |
− | | |
− | == See also == | |
− | | |
− | == See also ==
| |
− | | |
− | 参见
| |
− | | |
| {{div col|colwidth=20em}} | | {{div col|colwidth=20em}} |
− |
| |
− |
| |
− |
| |
| * [[Broken symmetry]] | | * [[Broken symmetry]] |
− |
| |
− |
| |
− |
| |
| * [[Butterfly effect]] | | * [[Butterfly effect]] |
− |
| |
− |
| |
− |
| |
| * [[Chaos theory]] | | * [[Chaos theory]] |
− |
| |
− |
| |
− |
| |
| * [[Domino effect]] | | * [[Domino effect]] |
− |
| |
− |
| |
− |
| |
| * [[Inflection point]] | | * [[Inflection point]] |
− |
| |
− |
| |
− |
| |
| * [[Morphology (biology)|Morphology]] | | * [[Morphology (biology)|Morphology]] |
− |
| |
− |
| |
− |
| |
| * [[Phase transition]] | | * [[Phase transition]] |
− |
| |
− |
| |
− |
| |
| * [[Punctuated equilibrium]] | | * [[Punctuated equilibrium]] |
− |
| |
− |
| |
− |
| |
| * [[Spontaneous symmetry breaking]] | | * [[Spontaneous symmetry breaking]] |
− |
| |
− |
| |
− |
| |
| * [[Snowball effect]] | | * [[Snowball effect]] |
− |
| |
− |
| |
− |
| |
| {{div col end}} | | {{div col end}} |
| | | |
| | | |
− | | + | == 参考资料 == |
− | | |
− | | |
− | | |
− | | |
− | == References == | |
− | | |
− | == References ==
| |
− | | |
− | 参考资料
| |
− | | |
| {{reflist|25em}} | | {{reflist|25em}} |
| | | |
| | | |
− | | + | ==参考书目== |
− | | |
− | | |
− | | |
− | | |
− | == Bibliography == | |
− | | |
− | == Bibliography ==
| |
− | | |
− | 参考书目
| |
| | | |
| *[[Vladimir Arnold|Arnold, Vladimir Igorevich]]. Catastrophe Theory, 3rd ed. Berlin: Springer-Verlag, 1992. | | *[[Vladimir Arnold|Arnold, Vladimir Igorevich]]. Catastrophe Theory, 3rd ed. Berlin: Springer-Verlag, 1992. |
− |
| |
− |
| |
− |
| |
| *[[Valentin Afraimovich|V. S. Afrajmovich]], V. I. Arnold, et al., Bifurcation Theory And Catastrophe Theory, {{ISBN|3-540-65379-1}} | | *[[Valentin Afraimovich|V. S. Afrajmovich]], V. I. Arnold, et al., Bifurcation Theory And Catastrophe Theory, {{ISBN|3-540-65379-1}} |
− |
| |
− |
| |
− |
| |
| *Bełej,M. Kulesza, S. Modeling the Real Estate Prices in Olsztyn under Instability Conditions. Folia Oeconomica Stetinensia. Volume 11, Issue 1, Pages 61–72, ISSN (Online) 1898-0198, ISSN (Print) 1730-4237, {{doi|10.2478/v10031-012-0008-7}}, 2013 | | *Bełej,M. Kulesza, S. Modeling the Real Estate Prices in Olsztyn under Instability Conditions. Folia Oeconomica Stetinensia. Volume 11, Issue 1, Pages 61–72, ISSN (Online) 1898-0198, ISSN (Print) 1730-4237, {{doi|10.2478/v10031-012-0008-7}}, 2013 |
| | | |
第650行: |
第470行: |
| *[[Erik Christopher Zeeman|Zeeman, E.C.]] Catastrophe Theory-Selected Papers 1972–1977. Reading, MA: Addison-Wesley, 1977. | | *[[Erik Christopher Zeeman|Zeeman, E.C.]] Catastrophe Theory-Selected Papers 1972–1977. Reading, MA: Addison-Wesley, 1977. |
| | | |
| + | == 外部链接 == |
| | | |
| | | |
− |
| |
− |
| |
− |
| |
− |
| |
− | == External links ==
| |
− |
| |
− | == External links ==
| |
− |
| |
− | 外部链接
| |
| | | |
| * [http://www.exploratorium.edu/complexity/CompLexicon/catastrophe.html CompLexicon: Catastrophe Theory] | | * [http://www.exploratorium.edu/complexity/CompLexicon/catastrophe.html CompLexicon: Catastrophe Theory] |
第671行: |
第483行: |
| | | |
| *[https://www.compadre.org/osp/items/detail.cfm?ID=11996 Java simulation of Zeeman's catastrophe machine] | | *[https://www.compadre.org/osp/items/detail.cfm?ID=11996 Java simulation of Zeeman's catastrophe machine] |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
| | | |
| | | |
| {{Authority control}} | | {{Authority control}} |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
| | | |
| [[Category:Bifurcation theory]] | | [[Category:Bifurcation theory]] |
第714行: |
第515行: |
| <small>This page was moved from [[wikipedia:en:Catastrophe theory]]. Its edit history can be viewed at [[突变论/edithistory]]</small></noinclude> | | <small>This page was moved from [[wikipedia:en:Catastrophe theory]]. Its edit history can be viewed at [[突变论/edithistory]]</small></noinclude> |
| | | |
− | [[Category:待整理页面]] | + | |
| + | |
| + | |
| + | <br> |
| + | ---- |
| + | 本中文词条由Moonscar、小饭编译,[[用户:INCH RONG |Inch]]审校,糖糖编辑,如有问题,欢迎在讨论页面留言。 |
| + | |
| + | |
| + | '''本词条内容源自wikipedia及公开资料,遵守 CC3.0协议。''' |