更改

删除199字节 、 2021年7月22日 (四) 15:51
无编辑摘要
第24行: 第24行:  
In developmental biology, pattern formation refers to the generation of complex organizations of cell fates in space and time. Pattern formation is controlled by genes. The role of genes in pattern formation is an aspect of morphogenesis, the creation of diverse anatomies from similar genes, now being explored in the science of evolutionary developmental biology or evo-devo. The mechanisms involved are well seen in the anterior-posterior patterning of embryos from the model organism Drosophila melanogaster (a fruit fly), one of the first organisms to have its morphogenesis studied and in the eyespots of butterflies, whose development is a variant of the standard (fruit fly) mechanism.
 
In developmental biology, pattern formation refers to the generation of complex organizations of cell fates in space and time. Pattern formation is controlled by genes. The role of genes in pattern formation is an aspect of morphogenesis, the creation of diverse anatomies from similar genes, now being explored in the science of evolutionary developmental biology or evo-devo. The mechanisms involved are well seen in the anterior-posterior patterning of embryos from the model organism Drosophila melanogaster (a fruit fly), one of the first organisms to have its morphogenesis studied and in the eyespots of butterflies, whose development is a variant of the standard (fruit fly) mechanism.
   −
在'''<font color="#ff8000"> 发育生物学 Developmental Biology</font>''' 中,斑图生成指的是细胞命运中复杂组织的产生过程。斑图生成由基因控制的。基因在斑图生成中所起的作用属于形态发生的一个方面,即由相似的基因演化出不同的生命结构,当下也属于演化发育生物学所探究的问题。模式生物黑腹果蝇(第一个应用到形态发生研究的物种)的胚胎的斑图生成过程和蝴蝶的眼点清楚地体现了这一机制,而后者的发育过程是标准(果蝇)机制的一种变体。
+
在'''<font color="#ff8000"> 发育生物学 Developmental Biology</font>''' 中,斑图生成指的是'''细胞命运'''中复杂组织的产生过程。斑图生成由基因控制的。基因在斑图生成中所起的作用属于形态发生的一个方面,即由相似的基因演化出不同的生命结构,当下也属于演化发育生物学所探究的问题。模式生物黑腹果蝇(第一个应用到形态发生研究的物种)的胚胎的斑图生成过程和蝴蝶的眼点清楚地体现了这一机制,而后者的发育过程是标准(果蝇)机制的一种变体。
    
==Examples==
 
==Examples==
第38行: 第38行:     
在生物、化学、物理和数学中都有斑图生成的实例,并且我们可以用'''<font color="#ff8000"> 计算机图形学 Computer Graphics</font>''' 轻松地来模拟,下面依次进行介绍。
 
在生物、化学、物理和数学中都有斑图生成的实例,并且我们可以用'''<font color="#ff8000"> 计算机图形学 Computer Graphics</font>''' 轻松地来模拟,下面依次进行介绍。
  −
===Biology===
      
===Biology===
 
===Biology===
第53行: 第51行:     
动物标记、动物分节和叶序等生物学斑图是以不同的方式形成的。
 
动物标记、动物分节和叶序等生物学斑图是以不同的方式形成的。
  −
      
In [[developmental biology]], pattern formation describes the mechanism by which initially equivalent cells in a developing tissue in an [[embryo]] assume complex forms and functions.<ref>Ball, 2009. Shapes, pp. 261–290.</ref> [[Embryogenesis]], such as [[Drosophila embryogenesis|of the fruit fly ''Drosophila'']], involves coordinated [[cell fate determination|control of cell fates]].<ref name="Lai">{{cite journal |author=Eric C. Lai |title=Notch signaling: control of cell communication and cell fate |doi=10.1242/dev.01074 |pmid=14973298 |volume=131 |issue=5 |date=March 2004 |pages=965–73 |journal=Development|doi-access=free }}</ref><ref name="Tyler">{{cite journal |title=Cellular pattern formation during retinal regeneration: A role for homotypic control of cell fate acquisition |authors=Melinda J. Tyler, David A. Cameron|journal=Vision Research |volume=47 |issue=4 |pages=501–511 |year=2007 |doi=10.1016/j.visres.2006.08.025 |pmid=17034830}}</ref><ref name="Meinhard">{{cite web|title=Biological pattern formation: How cell[s] talk with each other to achieve reproducible pattern formation |author=Hans Meinhard |agency= Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany |url=http://www1.biologie.uni-hamburg.de/b-online/e28_1/pattern.htm |date=2001-10-26 }}</ref> Pattern formation is genetically controlled, and often involves each cell in a field sensing and responding to its position along a [[morphogen]] gradient, followed by short distance cell-to-cell communication through [[cell signaling]] pathways to refine the initial pattern. In this context, a field of cells is the group of cells whose fates are affected by responding to the same set positional information cues. This conceptual model was first described as the [[French flag model]] in the 1960s.<ref>{{cite journal |doi=10.1016/S0022-5193(69)80016-0 |author=Wolpert L |title=Positional information and the spatial pattern of cellular differentiation |journal=J. Theor. Biol. |volume=25 |issue=1 |pages=1–47 |date=October 1969 |pmid=4390734 }}</ref><ref>{{cite book |author=Wolpert, Lewis |title=Principles of development |publisher=Oxford University Press |location=Oxford [Oxfordshire] |year=2007 |isbn=978-0-19-927536-6 |edition=3rd |display-authors=etal}}</ref> More generally, the morphology of organisms is patterned by the mechanisms of [[evolutionary developmental biology]], such as [[heterochrony|changing the timing]] and positioning of specific developmental events in the embryo.<ref>{{cite journal |last1=Hall |first1=B. K. |title=Evo-Devo: evolutionary developmental mechanisms |journal=International Journal of Developmental Biology |date=2003 |volume=47 |issue=7–8 |pages=491–495 |pmid=14756324}}</ref>
 
In [[developmental biology]], pattern formation describes the mechanism by which initially equivalent cells in a developing tissue in an [[embryo]] assume complex forms and functions.<ref>Ball, 2009. Shapes, pp. 261–290.</ref> [[Embryogenesis]], such as [[Drosophila embryogenesis|of the fruit fly ''Drosophila'']], involves coordinated [[cell fate determination|control of cell fates]].<ref name="Lai">{{cite journal |author=Eric C. Lai |title=Notch signaling: control of cell communication and cell fate |doi=10.1242/dev.01074 |pmid=14973298 |volume=131 |issue=5 |date=March 2004 |pages=965–73 |journal=Development|doi-access=free }}</ref><ref name="Tyler">{{cite journal |title=Cellular pattern formation during retinal regeneration: A role for homotypic control of cell fate acquisition |authors=Melinda J. Tyler, David A. Cameron|journal=Vision Research |volume=47 |issue=4 |pages=501–511 |year=2007 |doi=10.1016/j.visres.2006.08.025 |pmid=17034830}}</ref><ref name="Meinhard">{{cite web|title=Biological pattern formation: How cell[s] talk with each other to achieve reproducible pattern formation |author=Hans Meinhard |agency= Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany |url=http://www1.biologie.uni-hamburg.de/b-online/e28_1/pattern.htm |date=2001-10-26 }}</ref> Pattern formation is genetically controlled, and often involves each cell in a field sensing and responding to its position along a [[morphogen]] gradient, followed by short distance cell-to-cell communication through [[cell signaling]] pathways to refine the initial pattern. In this context, a field of cells is the group of cells whose fates are affected by responding to the same set positional information cues. This conceptual model was first described as the [[French flag model]] in the 1960s.<ref>{{cite journal |doi=10.1016/S0022-5193(69)80016-0 |author=Wolpert L |title=Positional information and the spatial pattern of cellular differentiation |journal=J. Theor. Biol. |volume=25 |issue=1 |pages=1–47 |date=October 1969 |pmid=4390734 }}</ref><ref>{{cite book |author=Wolpert, Lewis |title=Principles of development |publisher=Oxford University Press |location=Oxford [Oxfordshire] |year=2007 |isbn=978-0-19-927536-6 |edition=3rd |display-authors=etal}}</ref> More generally, the morphology of organisms is patterned by the mechanisms of [[evolutionary developmental biology]], such as [[heterochrony|changing the timing]] and positioning of specific developmental events in the embryo.<ref>{{cite journal |last1=Hall |first1=B. K. |title=Evo-Devo: evolutionary developmental mechanisms |journal=International Journal of Developmental Biology |date=2003 |volume=47 |issue=7–8 |pages=491–495 |pmid=14756324}}</ref>
第60行: 第56行:  
In developmental biology, pattern formation describes the mechanism by which initially equivalent cells in a developing tissue in an embryo assume complex forms and functions. Embryogenesis, such as of the fruit fly Drosophila, involves coordinated control of cell fates. Pattern formation is genetically controlled, and often involves each cell in a field sensing and responding to its position along a morphogen gradient, followed by short distance cell-to-cell communication through cell signaling pathways to refine the initial pattern. In this context, a field of cells is the group of cells whose fates are affected by responding to the same set positional information cues. This conceptual model was first described as the French flag model in the 1960s. More generally, the morphology of organisms is patterned by the mechanisms of evolutionary developmental biology, such as changing the timing and positioning of specific developmental events in the embryo.
 
In developmental biology, pattern formation describes the mechanism by which initially equivalent cells in a developing tissue in an embryo assume complex forms and functions. Embryogenesis, such as of the fruit fly Drosophila, involves coordinated control of cell fates. Pattern formation is genetically controlled, and often involves each cell in a field sensing and responding to its position along a morphogen gradient, followed by short distance cell-to-cell communication through cell signaling pathways to refine the initial pattern. In this context, a field of cells is the group of cells whose fates are affected by responding to the same set positional information cues. This conceptual model was first described as the French flag model in the 1960s. More generally, the morphology of organisms is patterned by the mechanisms of evolutionary developmental biology, such as changing the timing and positioning of specific developmental events in the embryo.
   −
在发育生物学中,斑图生成描述了胚胎组织发育中最初相同的细胞逐步呈现出复杂形态和功能的机制。以果蝇为例,'''<font color="#ff8000">胚胎发育 Embryogenesis</font>''' 涉及到细胞命运的协调控制。斑图生成是由遗传基因所控制,通常涉及一个场中的每个细胞沿着形态发生素梯度感知和响应其位置,然后通过细胞信号通路进行短距离的细胞间通信以完善初始斑图。在此背景下,'''<font color="#32CD32">细胞场 A Field of Cells</font>''' 是指通过响应同一组位置信息线索而影响其细胞命运的一组细胞。这个概念模型最早在20世纪60年代被描述为法旗模型。一般地,生物体的形态是由进化发育生物学的机制,如改变胚胎中特定发育事件的时间和位置所决定的。
+
在发育生物学中,斑图生成描述了胚胎组织发育中最初相同的细胞逐步呈现出复杂形态和功能的机制。以果蝇为例,'''<font color="#ff8000">胚胎发育 Embryogenesis</font>''' 涉及到细胞命运的协调控制。斑图生成是由遗传基因所控制,通常涉及一个场中的每个细胞沿着形态发生素梯度感知和响应其位置,然后通过细胞信号通路进行短距离的细胞间通信以完善初始斑图。在此背景下,'''<font color="#32CD32">细胞场 A Field of Cells</font>''' 是指通过响应同一组位置信息线索而影响其细胞命运的一组细胞。这个概念模型最早在20世纪60年代被描述为'''法旗模型'''。更一般来说,生物体的形态是由进化发育生物学的机制,如改变胚胎中特定发育事件的时间和位置所决定的。
 
  −
 
  −
 
  −
 
      
Possible mechanisms of pattern formation in biological systems include the classical [[reaction–diffusion]] model proposed by [[Alan Turing]]<ref>S. Kondo, T. Miura, "Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation", Science 24 Sep 2010: Vol. 329, Issue 5999, pp. 1616-1620 DOI: 10.1126/science.1179047</ref> and the more recently found [[elastic instability]] mechanism which is thought to be responsible for the fold patterns on the [[cerebral cortex]] of higher animals, among other things.<ref name="Mercker">{{cite journal |last1=Mercker |first1=M |last2=Brinkmann |first2=F |last3=Marciniak-Czochra |first3=A |last4=Richter |first4=T |title=Beyond Turing: mechanochemical pattern formation in biological tissues. |journal=Biology Direct |date=4 May 2016 |volume=11 |pages=22 |doi=10.1186/s13062-016-0124-7 |pmid=27145826|pmc=4857296 }}</ref><ref>Tallinen et al. Nature Physics 12, 588–593 (2016) doi:10.1038/nphys3632</ref>
 
Possible mechanisms of pattern formation in biological systems include the classical [[reaction–diffusion]] model proposed by [[Alan Turing]]<ref>S. Kondo, T. Miura, "Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation", Science 24 Sep 2010: Vol. 329, Issue 5999, pp. 1616-1620 DOI: 10.1126/science.1179047</ref> and the more recently found [[elastic instability]] mechanism which is thought to be responsible for the fold patterns on the [[cerebral cortex]] of higher animals, among other things.<ref name="Mercker">{{cite journal |last1=Mercker |first1=M |last2=Brinkmann |first2=F |last3=Marciniak-Czochra |first3=A |last4=Richter |first4=T |title=Beyond Turing: mechanochemical pattern formation in biological tissues. |journal=Biology Direct |date=4 May 2016 |volume=11 |pages=22 |doi=10.1186/s13062-016-0124-7 |pmid=27145826|pmc=4857296 }}</ref><ref>Tallinen et al. Nature Physics 12, 588–593 (2016) doi:10.1038/nphys3632</ref>
第71行: 第63行:     
生物系统中可能存在的斑图生成机制有阿兰 · 图灵Alan Turing提出的经典反应扩散模型和最近发现的弹性不稳定机制,该机制被认为是高等动物大脑皮层上褶皱模式等形成的原因。
 
生物系统中可能存在的斑图生成机制有阿兰 · 图灵Alan Turing提出的经典反应扩散模型和最近发现的弹性不稳定机制,该机制被认为是高等动物大脑皮层上褶皱模式等形成的原因。
  −
  −
  −
  −
  −
====Growth of colonies====
  −
   
====Growth of colonies====
 
====Growth of colonies====
   第87行: 第72行:     
细菌菌落在生长过程中形成的形态种类繁多,其形成的形状取决于生长条件。特别是,培养基的硬度、营养物质的缺乏等外部压力增强了所产生的模式的复杂性。对于其他生物,如粘液霉菌等,则显示出由化学信号动态引起的显著模式。
 
细菌菌落在生长过程中形成的形态种类繁多,其形成的形状取决于生长条件。特别是,培养基的硬度、营养物质的缺乏等外部压力增强了所产生的模式的复杂性。对于其他生物,如粘液霉菌等,则显示出由化学信号动态引起的显著模式。
  −
  −
  −
  −
====Vegetation patterns====
  −
   
====Vegetation patterns====
 
====Vegetation patterns====
   第98行: 第77行:     
{{Main|patterned vegetation}}
 
{{Main|patterned vegetation}}
文章主题 植被模式
+
文章主题 植被模式[[File:Tiger Bush Niger Corona 1965-12-31.jpg|thumb|[[Tiger bush]] is a [[patterned vegetation|vegetation pattern]] that forms in arid conditions.|链接=Special:FilePath/Tiger_Bush_Niger_Corona_1965-12-31.jpg]]
 
  −
 
  −
 
  −
[[File:Tiger Bush Niger Corona 1965-12-31.jpg|thumb|[[Tiger bush]] is a [[patterned vegetation|vegetation pattern]] that forms in arid conditions.|链接=Special:FilePath/Tiger_Bush_Niger_Corona_1965-12-31.jpg]]
      
[[Tiger bush is a vegetation pattern that forms in arid conditions.]]
 
[[Tiger bush is a vegetation pattern that forms in arid conditions.]]
第108行: 第83行:  
[虎灌木是在干旱条件下形成的植被模式。]
 
[虎灌木是在干旱条件下形成的植被模式。]
   −
 
+
[[patterned vegetation|Vegetation patterns]] such as [[tiger bush]]<ref name="TigerBush">{{cite book | title=Banded vegetation patterning in arid and semiarid environments | publisher=Springer-Verlag | author=Tongway, D.J., Valentin, C. & Seghieri, J. | year=2001 | location=New York|isbn=978-1461265597}}</ref> and [[fir wave]]s<ref name="FirWave">{{cite web | url=http://tiee.esa.org/vol/v1/figure_sets/disturb/disturb_back4.html | title=Fir Waves: Regeneration in New England Conifer Forests | publisher=TIEE | date=22 February 2004 | accessdate=26 May 2012 | author=D'Avanzo, C.}}</ref> form for different reasons. Tiger bush consists of stripes of bushes on arid slopes in countries such as [[Niger]] where plant growth is limited by rainfall. Each roughly horizontal stripe of vegetation absorbs rainwater from the bare zone immediately above it.<ref name="TigerBush" /> In contrast, fir waves occur in forests on mountain slopes after wind disturbance, during regeneration. When trees fall, the trees that they had sheltered become exposed and are in turn more likely to be damaged, so gaps tend to expand downwind. Meanwhile, on the windward side, young trees grow, protected by the wind shadow of the remaining tall trees<ref name="FirWave" />. In flat terrains additional pattern morphologies appear besides stripes - hexagonal gap patterns and hexagonal spot patterns. Pattern formation in this case is driven by positive feedback loops between local vegetation growth and water transport towards the growth location<ref>{{cite journal |author=Meron, E |title=Vegetation pattern formation: the mechanisms behind the forms |journal=Physics Today |volume=72 |issue=11 | pages=30-36 |year=2019 |doi=10.1063/PT.3.4340}}</ref><ref>{{cite journal |author=Meron, E |title=From Patterns to Function in Living Systems: Dryland Ecosystems as a Case Study|journal=Annual Review of Condensed Matter Physics  |volume=9 | pages=79-103  |year=2018 |doi=10.1146/annurev-conmatphys-033117-053959}}</ref>.
 
  −
 
  −
 
  −
[[patterned vegetation|Vegetation patterns]] such as [[tiger bush]]<ref name="TigerBush">{{cite book | title=Banded vegetation patterning in arid and semiarid environments | publisher=Springer-Verlag | author=Tongway, D.J., Valentin, C. & Seghieri, J. | year=2001 | location=New York|isbn=978-1461265597}}</ref> and [[fir wave]]s<ref name=FirWave>{{cite web | url=http://tiee.esa.org/vol/v1/figure_sets/disturb/disturb_back4.html | title=Fir Waves: Regeneration in New England Conifer Forests | publisher=TIEE | date=22 February 2004 | accessdate=26 May 2012 | author=D'Avanzo, C.}}</ref> form for different reasons. Tiger bush consists of stripes of bushes on arid slopes in countries such as [[Niger]] where plant growth is limited by rainfall. Each roughly horizontal stripe of vegetation absorbs rainwater from the bare zone immediately above it.<ref name=TigerBush/> In contrast, fir waves occur in forests on mountain slopes after wind disturbance, during regeneration. When trees fall, the trees that they had sheltered become exposed and are in turn more likely to be damaged, so gaps tend to expand downwind. Meanwhile, on the windward side, young trees grow, protected by the wind shadow of the remaining tall trees<ref name=FirWave/>. In flat terrains additional pattern morphologies appear besides stripes - hexagonal gap patterns and hexagonal spot patterns. Pattern formation in this case is driven by positive feedback loops between local vegetation growth and water transport towards the growth location<ref>{{cite journal |author=Meron, E |title=Vegetation pattern formation: the mechanisms behind the forms |journal=Physics Today |volume=72 |issue=11 | pages=30-36 |year=2019 |doi=10.1063/PT.3.4340}}</ref><ref>{{cite journal |author=Meron, E |title=From Patterns to Function in Living Systems: Dryland Ecosystems as a Case Study|journal=Annual Review of Condensed Matter Physics  |volume=9 | pages=79-103  |year=2018 |doi=10.1146/annurev-conmatphys-033117-053959}}</ref>.
      
Vegetation patterns such as tiger bush and fir waves form for different reasons. Tiger bush consists of stripes of bushes on arid slopes in countries such as Niger where plant growth is limited by rainfall. Each roughly horizontal stripe of vegetation absorbs rainwater from the bare zone immediately above it..
 
Vegetation patterns such as tiger bush and fir waves form for different reasons. Tiger bush consists of stripes of bushes on arid slopes in countries such as Niger where plant growth is limited by rainfall. Each roughly horizontal stripe of vegetation absorbs rainwater from the bare zone immediately above it..
第119行: 第90行:     
(审校):此处英文重新书写不完全,补充翻译:相比之下,在受到风的干扰后的植被更新过程中,山坡上的森林会出现冷杉波。当树木倒下时,曾经受到它们庇护的内层树木会暴露在外,进而植被更容易受到破坏。因此,林隙往往在上风向扩大。同时,在迎风坡,幼树在生长过程中受到其余高大树木自然形成的风影区保护。因此在平坦的地形中,植被除了条带状之外,还出现了其他的图案形态——六边形缝隙图案和六边形斑点图案。在这种情况下,植被模式是在当地植被生长和向生长位置的水输送之间的正反馈回路作用下形成的。
 
(审校):此处英文重新书写不完全,补充翻译:相比之下,在受到风的干扰后的植被更新过程中,山坡上的森林会出现冷杉波。当树木倒下时,曾经受到它们庇护的内层树木会暴露在外,进而植被更容易受到破坏。因此,林隙往往在上风向扩大。同时,在迎风坡,幼树在生长过程中受到其余高大树木自然形成的风影区保护。因此在平坦的地形中,植被除了条带状之外,还出现了其他的图案形态——六边形缝隙图案和六边形斑点图案。在这种情况下,植被模式是在当地植被生长和向生长位置的水输送之间的正反馈回路作用下形成的。
  −
===Chemistry===
      
===Chemistry===
 
===Chemistry===
第127行: 第96行:     
{{expand section|date=March 2013}}
 
{{expand section|date=March 2013}}
  −
      
{{further|reaction–diffusion system|Turing patterns}}Pattern formation has been well studied in chemistry and chemical engineering, including both temperature and concentration patterns.<ref name=":0">{{Cite journal|last=Gupta|first=Ankur|last2=Chakraborty|first2=Saikat|date=January 2009|title=Linear stability analysis of high- and low-dimensional models for describing mixing-limited pattern formation in homogeneous autocatalytic reactors|journal=Chemical Engineering Journal|volume=145|issue=3|pages=399–411|doi=10.1016/j.cej.2008.08.025|issn=1385-8947}}</ref> The [[Brusselator]] model developed by [[Ilya Prigogine]] and collaborators is one such example that exhibits [[Turing instability]].<ref>{{Citation|last=Prigogine|first=I.|title=Self-Organisation in Nonequilibrium Systems: Towards A Dynamics of Complexity|date=1985|work=Bifurcation Analysis: Principles, Applications and Synthesis|pages=3–12|editor-last=Hazewinkel|editor-first=M.|publisher=Springer Netherlands|doi=10.1007/978-94-009-6239-2_1|isbn=9789400962392|last2=Nicolis|first2=G.|editor2-last=Jurkovich|editor2-first=R.|editor3-last=Paelinck|editor3-first=J. H. P.}}</ref> Pattern formation in chemical systems often involve [[Chemical oscillator|oscillatory chemical kinetics]] or [[Autocatalysis|autocatalytic reactions]]<ref name=":1">{{Cite journal|last=Gupta|first=Ankur|last2=Chakraborty|first2=Saikat|date=2008-01-19|title=Dynamic Simulation of Mixing-Limited Pattern Formation in Homogeneous Autocatalytic Reactions|journal=Chemical Product and Process Modeling|volume=3|issue=2|doi=10.2202/1934-2659.1135|issn=1934-2659}}</ref> such as [[Belousov–Zhabotinsky reaction]] or [[Briggs–Rauscher reaction]]. In industrial applications such as chemical reactors, pattern formation can lead to temperature hot spots which can reduce the yield or create hazardous safety problems such as a [[thermal runaway]].<ref>{{Cite journal|last=Marwaha|first=Bharat|last2=Sundarram|first2=Sandhya|last3=Luss|first3=Dan|date=September 2004|title=Dynamics of Transversal Hot Zones in Shallow Packed-Bed Reactors†|journal=The Journal of Physical Chemistry B|volume=108|issue=38|pages=14470–14476|doi=10.1021/jp049803p|issn=1520-6106}}</ref><ref name=":0" /> The emergence of pattern formation can be studied by mathematical modeling and simulation of the underlying [[Reaction–diffusion system|reaction-diffusion system]].<ref name=":0" /><ref name=":1" />
 
{{further|reaction–diffusion system|Turing patterns}}Pattern formation has been well studied in chemistry and chemical engineering, including both temperature and concentration patterns.<ref name=":0">{{Cite journal|last=Gupta|first=Ankur|last2=Chakraborty|first2=Saikat|date=January 2009|title=Linear stability analysis of high- and low-dimensional models for describing mixing-limited pattern formation in homogeneous autocatalytic reactors|journal=Chemical Engineering Journal|volume=145|issue=3|pages=399–411|doi=10.1016/j.cej.2008.08.025|issn=1385-8947}}</ref> The [[Brusselator]] model developed by [[Ilya Prigogine]] and collaborators is one such example that exhibits [[Turing instability]].<ref>{{Citation|last=Prigogine|first=I.|title=Self-Organisation in Nonequilibrium Systems: Towards A Dynamics of Complexity|date=1985|work=Bifurcation Analysis: Principles, Applications and Synthesis|pages=3–12|editor-last=Hazewinkel|editor-first=M.|publisher=Springer Netherlands|doi=10.1007/978-94-009-6239-2_1|isbn=9789400962392|last2=Nicolis|first2=G.|editor2-last=Jurkovich|editor2-first=R.|editor3-last=Paelinck|editor3-first=J. H. P.}}</ref> Pattern formation in chemical systems often involve [[Chemical oscillator|oscillatory chemical kinetics]] or [[Autocatalysis|autocatalytic reactions]]<ref name=":1">{{Cite journal|last=Gupta|first=Ankur|last2=Chakraborty|first2=Saikat|date=2008-01-19|title=Dynamic Simulation of Mixing-Limited Pattern Formation in Homogeneous Autocatalytic Reactions|journal=Chemical Product and Process Modeling|volume=3|issue=2|doi=10.2202/1934-2659.1135|issn=1934-2659}}</ref> such as [[Belousov–Zhabotinsky reaction]] or [[Briggs–Rauscher reaction]]. In industrial applications such as chemical reactors, pattern formation can lead to temperature hot spots which can reduce the yield or create hazardous safety problems such as a [[thermal runaway]].<ref>{{Cite journal|last=Marwaha|first=Bharat|last2=Sundarram|first2=Sandhya|last3=Luss|first3=Dan|date=September 2004|title=Dynamics of Transversal Hot Zones in Shallow Packed-Bed Reactors†|journal=The Journal of Physical Chemistry B|volume=108|issue=38|pages=14470–14476|doi=10.1021/jp049803p|issn=1520-6106}}</ref><ref name=":0" /> The emergence of pattern formation can be studied by mathematical modeling and simulation of the underlying [[Reaction–diffusion system|reaction-diffusion system]].<ref name=":0" /><ref name=":1" />
第135行: 第102行:     
斑图生成在化学和化学工程中的研究取得了突破性的成果,包括温度和浓度模式。由伊利亚·普里戈吉因Ilya Prigogine和其合作团队开发的Brusselator模型就是一个展示出图灵不稳定性的例子。化学体系中的模式形成通常涉及'''<font color="#ff8000"> 振荡化学动力学oscillatory chemical kinetics</font>'''或'''<font color="#ff8000"> 自催化反应autocatalytic reactions</font>''',如Belousov-Zhabotinsky反应或Briggs-Rauscher反应。在工业应用中,如化学反应堆,模式形成可能导致温度热点,这可能降低产量或造成危险的安全问题,如热失控。模式形成的出现可以用潜在的反应扩散系统的数学建模与模拟来研究。
 
斑图生成在化学和化学工程中的研究取得了突破性的成果,包括温度和浓度模式。由伊利亚·普里戈吉因Ilya Prigogine和其合作团队开发的Brusselator模型就是一个展示出图灵不稳定性的例子。化学体系中的模式形成通常涉及'''<font color="#ff8000"> 振荡化学动力学oscillatory chemical kinetics</font>'''或'''<font color="#ff8000"> 自催化反应autocatalytic reactions</font>''',如Belousov-Zhabotinsky反应或Briggs-Rauscher反应。在工业应用中,如化学反应堆,模式形成可能导致温度热点,这可能降低产量或造成危险的安全问题,如热失控。模式形成的出现可以用潜在的反应扩散系统的数学建模与模拟来研究。
  −
  −
  −
  −
   
* [[Belousov–Zhabotinsky reaction]]
 
* [[Belousov–Zhabotinsky reaction]]
  −
      
* [[Liesegang rings]]
 
* [[Liesegang rings]]
  −
===Physics===
      
===Physics===
 
===Physics===
第153行: 第111行:     
{{expand section|date=March 2013}}
 
{{expand section|date=March 2013}}
  −
  −
  −
  −
  −
      
In the 1980s [[Lugiato–Lefever equation|Lugiato and Lefever]] developed a model of light propagation in an optical cavity that results in pattern formation by the exploitation of nonlinear effects.
 
In the 1980s [[Lugiato–Lefever equation|Lugiato and Lefever]] developed a model of light propagation in an optical cavity that results in pattern formation by the exploitation of nonlinear effects.
第165行: 第117行:     
20世纪80年代,卢贾托Lugiato和勒弗Lefever开发了一个光在光学谐振腔中传播的模型,该模型通过利用非线性效应形成斑图。
 
20世纪80年代,卢贾托Lugiato和勒弗Lefever开发了一个光在光学谐振腔中传播的模型,该模型通过利用非线性效应形成斑图。
  −
  −
  −
      
[[Bénard cell]]s, [[laser]], [[cloud|cloud formation]]s in stripes or rolls. Ripples in icicles. Washboard patterns on dirtroads. [[dendrite (crystal)|Dendrites]] in [[freezing|solidification]], [[liquid crystal]]s. [[Soliton]]s.
 
[[Bénard cell]]s, [[laser]], [[cloud|cloud formation]]s in stripes or rolls. Ripples in icicles. Washboard patterns on dirtroads. [[dendrite (crystal)|Dendrites]] in [[freezing|solidification]], [[liquid crystal]]s. [[Soliton]]s.
第175行: 第123行:     
如贝纳尔细胞、激光、条状云或卷状云、冰柱上的涟漪、泥路上的洗衣板等图案以及凝固中的树枝状、液晶、孤子等。
 
如贝纳尔细胞、激光、条状云或卷状云、冰柱上的涟漪、泥路上的洗衣板等图案以及凝固中的树枝状、液晶、孤子等。
  −
===Mathematics===
      
===Mathematics===
 
===Mathematics===
第183行: 第129行:     
{{expand section|date=March 2013}}
 
{{expand section|date=March 2013}}
  −
      
[[Sphere packing]]s and coverings. Mathematics underlies the other pattern formation mechanisms listed.
 
[[Sphere packing]]s and coverings. Mathematics underlies the other pattern formation mechanisms listed.
第191行: 第135行:     
球形填料和覆盖物。数学是其他斑图生成机制的基础。
 
球形填料和覆盖物。数学是其他斑图生成机制的基础。
  −
  −
  −
      
{{further|Gradient pattern analysis}}
 
{{further|Gradient pattern analysis}}
 
{{进一步|梯度模式分析}}
 
{{进一步|梯度模式分析}}
  −
  −
  −
  −
  −
  −
  −
===Computer graphics===
  −
   
===Computer graphics===
 
===Computer graphics===
   第216行: 第147行:     
类似[[反应-扩散模型,使用锐化和模糊技术制作]]的图案。
 
类似[[反应-扩散模型,使用锐化和模糊技术制作]]的图案。
  −
  −
  −
      
{{further|Cellular automaton}}
 
{{further|Cellular automaton}}
 
{{进一步|细胞自动机}}
 
{{进一步|细胞自动机}}
  −
  −
  −
  −
  −
      
Some types of [[finite-state machine|automata]] have been used to generate organic-looking [[texture (computer graphics)|textures]] for more realistic [[Shader|shading]] of [[3D modeling|3d objects]].<ref>Greg Turk, [http://www.cc.gatech.edu/~turk/reaction_diffusion/reaction_diffusion.html Reaction–Diffusion]</ref><ref>{{cite journal|title=Reaction–Diffusion Textures|author1=Andrew Witkin |author2=Michael Kassy |url=https://www.cs.cmu.edu/~aw/pdf/texture.pdf|doi=10.1145/122718.122750|journal=Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques|year=1991|pages=299–308|isbn=0897914368 }}</ref>
 
Some types of [[finite-state machine|automata]] have been used to generate organic-looking [[texture (computer graphics)|textures]] for more realistic [[Shader|shading]] of [[3D modeling|3d objects]].<ref>Greg Turk, [http://www.cc.gatech.edu/~turk/reaction_diffusion/reaction_diffusion.html Reaction–Diffusion]</ref><ref>{{cite journal|title=Reaction–Diffusion Textures|author1=Andrew Witkin |author2=Michael Kassy |url=https://www.cs.cmu.edu/~aw/pdf/texture.pdf|doi=10.1145/122718.122750|journal=Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques|year=1991|pages=299–308|isbn=0897914368 }}</ref>
第235行: 第156行:     
一些类型的自动机已经被用来生成看起来有机的纹理,以便对三维物体进行更真实的阴影处理。
 
一些类型的自动机已经被用来生成看起来有机的纹理,以便对三维物体进行更真实的阴影处理。
  −
  −
  −
      
A popular Photoshop plugin, [[Kai's Power Tools|KPT 6]], included a filter called 'KPT reaction'. Reaction produced [[reaction–diffusion system|reaction–diffusion]] style patterns based on the supplied seed image.
 
A popular Photoshop plugin, [[Kai's Power Tools|KPT 6]], included a filter called 'KPT reaction'. Reaction produced [[reaction–diffusion system|reaction–diffusion]] style patterns based on the supplied seed image.
第245行: 第162行:     
一个流行的Photoshop插件,KPT6,包括一个名为“KPT反应”的过滤器。反应根据提供的种子图像产生反应-扩散风格的图案。
 
一个流行的Photoshop插件,KPT6,包括一个名为“KPT反应”的过滤器。反应根据提供的种子图像产生反应-扩散风格的图案。
  −
  −
  −
      
A similar effect to the 'KPT reaction' can be achieved with [[convolution]] functions in [[digital image processing]], with a little patience, by repeatedly [[unsharp masking|sharpening]] and [[box blur|blurring]] an image in a graphics editor. If other filters are used, such as [[image embossing|emboss]] or [[edge detection]], different types of effects can be achieved.
 
A similar effect to the 'KPT reaction' can be achieved with [[convolution]] functions in [[digital image processing]], with a little patience, by repeatedly [[unsharp masking|sharpening]] and [[box blur|blurring]] an image in a graphics editor. If other filters are used, such as [[image embossing|emboss]] or [[edge detection]], different types of effects can be achieved.
第255行: 第168行:     
利用数字图像处理中的'''<font color="#ff8000"> 卷积函数convolution functions</font>''',只要稍有耐心,在图形编辑器中反复对图像进行锐化和模糊处理,就能达到类似 "KPT反应 "的效果。如果使用其他滤镜,如浮雕或边缘检测,可以实现不同类型的效果。
 
利用数字图像处理中的'''<font color="#ff8000"> 卷积函数convolution functions</font>''',只要稍有耐心,在图形编辑器中反复对图像进行锐化和模糊处理,就能达到类似 "KPT反应 "的效果。如果使用其他滤镜,如浮雕或边缘检测,可以实现不同类型的效果。
  −
  −
  −
      
Computers are often used to [[computer simulation|simulate]] the biological, physical or chemical processes that lead to pattern formation, and they can display the results in a realistic way. Calculations using models like [[reaction–diffusion]] or [[MClone]] are based on the actual mathematical equations designed by the scientists to model the studied phenomena.
 
Computers are often used to [[computer simulation|simulate]] the biological, physical or chemical processes that lead to pattern formation, and they can display the results in a realistic way. Calculations using models like [[reaction–diffusion]] or [[MClone]] are based on the actual mathematical equations designed by the scientists to model the studied phenomena.
596

个编辑