更改

添加4字节 、 2021年7月31日 (六) 15:09
第240行: 第240行:     
在过去的三十年里,凝聚态物理学家发现了物质的相的崭新领域:相互作用的粒子涌现的集体态(emergent, collective states)。这些新的物质状态迥异于通常的固态、液态或气态。这些物相有些已经在实验室中实现,而另一些只是理论上可能存在。
 
在过去的三十年里,凝聚态物理学家发现了物质的相的崭新领域:相互作用的粒子涌现的集体态(emergent, collective states)。这些新的物质状态迥异于通常的固态、液态或气态。这些物相有些已经在实验室中实现,而另一些只是理论上可能存在。
 +
    
上世纪80年代关于分数量子霍尔效应(fractional quantum Hall effect)的实验表明,在某些情况下,电子大量分裂成分数粒子(fractions of particles),在时空中留下发辫般的轨迹。在另一些情况下,电子可以是零质量的集体激发。比如,自旋粒子的晶格变成旋转的环、分叉的弦的流体,再者,原本处于绝缘状态的晶体,表面开始导电,即拓扑绝缘体。
 
上世纪80年代关于分数量子霍尔效应(fractional quantum Hall effect)的实验表明,在某些情况下,电子大量分裂成分数粒子(fractions of particles),在时空中留下发辫般的轨迹。在另一些情况下,电子可以是零质量的集体激发。比如,自旋粒子的晶格变成旋转的环、分叉的弦的流体,再者,原本处于绝缘状态的晶体,表面开始导电,即拓扑绝缘体。
 +
    
如今,为了发展量子计算机,微软和其他机构的研究小组正竞相将量子信息编码进这些发辫状与环状的物相。
 
如今,为了发展量子计算机,微软和其他机构的研究小组正竞相将量子信息编码进这些发辫状与环状的物相。
 +
    
同时,就在最近,凝聚态物理学家在理解可能产生的不同集体行为背后的模式方面取得了重大进展,目的是列举和分类所有可能的物相。如果实现了完整的分类,不仅可以解释到目前为止自然界中已知的所有物相,而且还可能指引新材料和新技术的方向。
 
同时,就在最近,凝聚态物理学家在理解可能产生的不同集体行为背后的模式方面取得了重大进展,目的是列举和分类所有可能的物相。如果实现了完整的分类,不仅可以解释到目前为止自然界中已知的所有物相,而且还可能指引新材料和新技术的方向。
 +
    
在众多理论物理学家的带领下,加上数学家的贡献,研究人员已将大量一维或二维空间可能出现的物相分类,方法是将物质与其拓扑结构联系起来。(拓扑,即描述球面、环面等形状不变性的数学。)
 
在众多理论物理学家的带领下,加上数学家的贡献,研究人员已将大量一维或二维空间可能出现的物相分类,方法是将物质与其拓扑结构联系起来。(拓扑,即描述球面、环面等形状不变性的数学。)
1,068

个编辑