更改

添加191字节 、 2021年8月1日 (日) 16:05
无编辑摘要
第66行: 第66行:     
[[patterned vegetation|Vegetation patterns]] such as [[tiger bush]]<ref name="TigerBush">{{cite book | title=Banded vegetation patterning in arid and semiarid environments | publisher=Springer-Verlag | author=Tongway, D.J., Valentin, C. & Seghieri, J. | year=2001 | location=New York|isbn=978-1461265597}}</ref> and [[fir wave]]s<ref name="FirWave">{{cite web | url=http://tiee.esa.org/vol/v1/figure_sets/disturb/disturb_back4.html | title=Fir Waves: Regeneration in New England Conifer Forests | publisher=TIEE | date=22 February 2004 | accessdate=26 May 2012 | author=D'Avanzo, C.}}</ref> form for different reasons. Tiger bush consists of stripes of bushes on arid slopes in countries such as [[Niger]] where plant growth is limited by rainfall. Each roughly horizontal stripe of vegetation absorbs rainwater from the bare zone immediately above it.<ref name="TigerBush" /> In contrast, fir waves occur in forests on mountain slopes after wind disturbance, during regeneration. When trees fall, the trees that they had sheltered become exposed and are in turn more likely to be damaged, so gaps tend to expand downwind. Meanwhile, on the windward side, young trees grow, protected by the wind shadow of the remaining tall trees<ref name="FirWave" />. In flat terrains additional pattern morphologies appear besides stripes - hexagonal gap patterns and hexagonal spot patterns. Pattern formation in this case is driven by positive feedback loops between local vegetation growth and water transport towards the growth location<ref>{{cite journal |author=Meron, E |title=Vegetation pattern formation: the mechanisms behind the forms |journal=Physics Today |volume=72 |issue=11 | pages=30-36 |year=2019 |doi=10.1063/PT.3.4340}}</ref><ref>{{cite journal |author=Meron, E |title=From Patterns to Function in Living Systems: Dryland Ecosystems as a Case Study|journal=Annual Review of Condensed Matter Physics  |volume=9 | pages=79-103  |year=2018 |doi=10.1146/annurev-conmatphys-033117-053959}}</ref>.
 
[[patterned vegetation|Vegetation patterns]] such as [[tiger bush]]<ref name="TigerBush">{{cite book | title=Banded vegetation patterning in arid and semiarid environments | publisher=Springer-Verlag | author=Tongway, D.J., Valentin, C. & Seghieri, J. | year=2001 | location=New York|isbn=978-1461265597}}</ref> and [[fir wave]]s<ref name="FirWave">{{cite web | url=http://tiee.esa.org/vol/v1/figure_sets/disturb/disturb_back4.html | title=Fir Waves: Regeneration in New England Conifer Forests | publisher=TIEE | date=22 February 2004 | accessdate=26 May 2012 | author=D'Avanzo, C.}}</ref> form for different reasons. Tiger bush consists of stripes of bushes on arid slopes in countries such as [[Niger]] where plant growth is limited by rainfall. Each roughly horizontal stripe of vegetation absorbs rainwater from the bare zone immediately above it.<ref name="TigerBush" /> In contrast, fir waves occur in forests on mountain slopes after wind disturbance, during regeneration. When trees fall, the trees that they had sheltered become exposed and are in turn more likely to be damaged, so gaps tend to expand downwind. Meanwhile, on the windward side, young trees grow, protected by the wind shadow of the remaining tall trees<ref name="FirWave" />. In flat terrains additional pattern morphologies appear besides stripes - hexagonal gap patterns and hexagonal spot patterns. Pattern formation in this case is driven by positive feedback loops between local vegetation growth and water transport towards the growth location<ref>{{cite journal |author=Meron, E |title=Vegetation pattern formation: the mechanisms behind the forms |journal=Physics Today |volume=72 |issue=11 | pages=30-36 |year=2019 |doi=10.1063/PT.3.4340}}</ref><ref>{{cite journal |author=Meron, E |title=From Patterns to Function in Living Systems: Dryland Ecosystems as a Case Study|journal=Annual Review of Condensed Matter Physics  |volume=9 | pages=79-103  |year=2018 |doi=10.1146/annurev-conmatphys-033117-053959}}</ref>.
 
+
[[文件:Tiger Bush Niger Corona 1965-12-31.jpg|缩略图|Tiger bush is a vegetation pattern that forms in arid conditions.虎皮纹灌木是一种在干旱条件下形成的植被模式。]]
 
虎皮纹灌木和冷杉波纹等植被斑图形成的原因不同。在尼日尔等干旱国家,植物生长受到降雨的限制,虎皮纹灌木由干旱斜坡上的带状灌木组成。每一条大致水平的植被带都可以从紧靠其上方的裸露地带吸收雨水。相比之下,在受到大风摧残后的植被再生过程中,山坡上的森林会出现冷杉波纹。当较外层树木倒下时,曾经受到它们庇护的内层树木会暴露在外,进而这部分植被更容易受到破坏。因此,树林空隙往往向背风面扩大。同时在迎风坡,幼树在生长过程中则受到存活下来的高大树木自然形成的风影区保护。因此在平坦的地形中,植被除了条带状之外,还出现了其他的斑图形态—例如六边形缝隙斑图和六边形点状斑图。在这种情况下,植被斑图是在当地植被生长和朝向生长位置的水分输送之间的正反馈回路驱动下形成的。
 
虎皮纹灌木和冷杉波纹等植被斑图形成的原因不同。在尼日尔等干旱国家,植物生长受到降雨的限制,虎皮纹灌木由干旱斜坡上的带状灌木组成。每一条大致水平的植被带都可以从紧靠其上方的裸露地带吸收雨水。相比之下,在受到大风摧残后的植被再生过程中,山坡上的森林会出现冷杉波纹。当较外层树木倒下时,曾经受到它们庇护的内层树木会暴露在外,进而这部分植被更容易受到破坏。因此,树林空隙往往向背风面扩大。同时在迎风坡,幼树在生长过程中则受到存活下来的高大树木自然形成的风影区保护。因此在平坦的地形中,植被除了条带状之外,还出现了其他的斑图形态—例如六边形缝隙斑图和六边形点状斑图。在这种情况下,植被斑图是在当地植被生长和朝向生长位置的水分输送之间的正反馈回路驱动下形成的。
  
596

个编辑