更改

第120行: 第120行:     
[[File:Svm max sep hyperplane with margin.png|thumb|支持向量机是一个有监督学习模型,它将数据划分为由线性边界分隔的区域。在这里,有一个线性边界可以将黑色圆圈和白色圆圈分开。]]
 
[[File:Svm max sep hyperplane with margin.png|thumb|支持向量机是一个有监督学习模型,它将数据划分为由线性边界分隔的区域。在这里,有一个线性边界可以将黑色圆圈和白色圆圈分开。]]
有监督学习算法会建立一个包含输入和期望输出的数据集上的的数学模型。<ref>{{cite book |last1=Russell |first1=Stuart J. |last2=Norvig |first2=Peter |title=Artificial Intelligence: A Modern Approach |date=2010 |publisher=Prentice Hall |isbn=9780136042594 |edition=Third|title-link=Artificial Intelligence: A Modern Approach }}</ref> 这些数据被称为训练数据,由一组组训练样本组成。每个训练样本都有一个或多个输入和期望的输出,也称为监督信号。在数学模型中,每个训练样本由一个数组或向量表示,有时也称为'''特征向量 Feature Vector''',训练数据由一个矩阵表示。通过对目标函数的迭代优化,监督式学习算法可以学习到一个用来预测与新输入相关的输出的函数。<ref>{{cite book |last1=Mohri |first1=Mehryar |last2=Rostamizadeh |first2=Afshin |last3=Talwalkar |first3=Ameet |title=Foundations of Machine Learning |date=2012 |publisher=The MIT Press |isbn=9780262018258}}</ref> 一个达到最优的目标函数可以实现算法对未知输入的输出结果有正确的预判,这种正确的预判并不仅限于训练数据上(即模型具有良好的泛化能力)。随着时间的推移,提高输出或预测精度的算法被称为已学会执行该任务。<ref name="Mitchell-1997" />
+
有监督学习算法会建立一个包含输入和期望输出的数据集上的的数学模型。<ref>{{cite book |last1=Russell |first1=Stuart J. |last2=Norvig |first2=Peter |title=Artificial Intelligence: A Modern Approach |date=2010 |publisher=Prentice Hall |isbn=9780136042594 |edition=Third|title-link=Artificial Intelligence: A Modern Approach }}</ref> 这些数据被称为训练数据,由一组组训练样本组成。每个训练样本都有一个或多个输入和期望的输出,也称为监督信号。在数学模型中,每个训练样本由一个数组或向量表示,有时也称为'''特征向量 Feature Vector''',训练数据由一个矩阵表示。通过对目标函数的迭代优化,监督式学习算法可以学习到一个用来预测与新输入相关的输出的函数。<ref>{{cite book |last1=Mohri |first1=Mehryar |last2=Rostamizadeh |first2=Afshin |last3=Talwalkar |first3=Ameet |title=Foundations of Machine Learning |date=2012 |publisher=The MIT Press |isbn=9780262018258}}</ref> 一个达到最优的目标函数可以实现算法对未知输入的输出结果有正确的预判,这种正确的预判并不仅限于训练数据上(即模型具有良好的泛化能力)。随着时间的推移,提高输出或预测精度的算法被称为已学会执行该任务。<ref name="Mitchell-1997">Mitchell, T. (1997). Machine Learning. McGraw Hill. p. 2. ISBN 978-0-07-042807-2. </ref>
      第128行: 第128行:  
'''相似性学习 Similarity Learning'''是监督学习领域中与回归和分类密切相关的一个领域,但其目标是从实例中学习如何通过使用相似性函数来衡量两个对象之间的相似程度。它在排名、推荐系统、视觉身份跟踪、人脸验证和'''语者验证 Speaker Verification'''等方面都有应用。
 
'''相似性学习 Similarity Learning'''是监督学习领域中与回归和分类密切相关的一个领域,但其目标是从实例中学习如何通过使用相似性函数来衡量两个对象之间的相似程度。它在排名、推荐系统、视觉身份跟踪、人脸验证和'''语者验证 Speaker Verification'''等方面都有应用。
    +
</ref>
    
==== 无监督学习 ====
 
==== 无监督学习 ====
7,129

个编辑