更改

删除3,066字节 、 2021年8月7日 (六) 21:05
第241行: 第241行:  
===不确定推理的概率方法===
 
===不确定推理的概率方法===
   −
[[File:EM Clustering of Old Faithful data.gif|right|frame|[[Expectation-maximization]] clustering of [[Old Faithful]] eruption data starts from a random guess but then successfully converges on an accurate clustering of the two physically distinct modes of eruption.[[期望-最大化老实泉喷发数据的聚类从一个随机的猜测开始,然后成功地收敛到两个物理上截然不同的喷发模式的精确聚类]]]]
+
[[File:EM Clustering of Old Faithful data.gif|right|frame|期望-最大化老实泉喷发数据的聚类从一个随机的猜测开始,然后成功地收敛到两个物理上截然不同的喷发模式的精确聚类]]
   −
[[Expectation-maximization clustering of Old Faithful eruption data starts from a random guess but then successfully converges on an accurate clustering of the two physically distinct modes of eruption.]]
+
AI中的许多问题(在推理、规划、学习、感知和机器人技术方面)要求主体在信息不完整或不确定的情况下进行操作。AI研究人员从概率论和经济学的角度设计了许多强大的工具来解决这些问题。<ref name="ACM Computing Classification System: Artificial intelligence">
      −
Many problems in AI (in reasoning, planning, learning, perception, and robotics) require the agent to operate with incomplete or uncertain information. AI researchers have devised a number of powerful tools to solve these problems using methods from [[probability]] theory and economics.<ref name="Stochastic methods for uncertain reasoning"/>
+
'''[[贝叶斯网络]] Bayesian Networks ''' 是一个非常通用的工具,可用于各种问题: 推理(使用贝叶斯推断算法) ,学习(使用期望最大化算法) ,规划(使用决策网络)和感知(使用动态贝叶斯网络)。概率算法也可以用于滤波、预测、平滑和解释数据流,帮助传感系统分析随时间发生的过程(例如,[[隐马尔可夫模型]]或'''卡尔曼滤波器 Kalman Filters''')。与符号逻辑相比,形式化的贝叶斯推断逻辑运算量很大。为了使推理易于处理,大多数观察值必须彼此条件独立。含有菱形或其他“圈”(无向循环)的复杂图形可能需要比如马尔科夫-蒙特卡罗图的复杂方法,这种方法将一组随机行走遍布整个贝叶斯网络,并试图收敛到对条件概率的评估。贝叶斯网络在 Xbox Live 上被用来评估和匹配玩家:胜率是证明一个玩家有多有优秀的“证据”。AdSense使用一个有超过3亿条边的贝叶斯网络来学习如何推送广告的。<ref>Domingos, Pedro (2015). The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World. Basic Books. ISBN 978-0-465-06192-1.</ref>
   −
AI中的许多问题(在推理、规划、学习、感知和机器人技术方面)要求主体在信息不完整或不确定的情况下进行操作。AI研究人员从概率论和经济学的角度设计了许多强大的工具来解决这些问题。
  −
  −
  −
[[Bayesian network]]s<ref name="Bayesian networks"/> are a very general tool that can be used for various problems: reasoning (using the [[Bayesian inference]] algorithm),<ref name="Bayesian inference"/> [[Machine learning|learning]] (using the [[expectation-maximization algorithm]]),{{efn|Expectation-maximization, one of the most popular algorithms in machine learning, allows clustering in the presence of unknown [[latent variables]]{{sfn|Domingos|2015|p=210}}}}<ref name="Bayesian learning"/> [[Automated planning and scheduling|planning]] (using [[decision network]]s)<ref name="Bayesian decision networks"/> and [[machine perception|perception]] (using [[dynamic Bayesian network]]s).<ref name="Stochastic temporal models"/> Probabilistic algorithms can also be used for filtering, prediction, smoothing and finding explanations for streams of data, helping [[machine perception|perception]] systems to analyze processes that occur over time (e.g., [[hidden Markov model]]s or [[Kalman filter]]s).<ref name="Stochastic temporal models"/> Compared with symbolic logic, formal Bayesian inference is computationally expensive. For inference to be tractable, most observations must be [[conditionally independent]] of one another. Complicated graphs with diamonds or other "loops" (undirected [[cycle (graph theory)|cycles]]) can require a sophisticated method such as [[Markov chain Monte Carlo]], which spreads an ensemble of [[random walk]]ers throughout the Bayesian network and attempts to converge to an assessment of the conditional probabilities. Bayesian networks are used on [[Xbox Live]] to rate and match players; wins and losses are "evidence" of how good a player is{{citation needed|date=July 2019}}. [[Google AdSense|AdSense]] uses a Bayesian network with over 300 million edges to learn which ads to serve.{{sfn|Domingos|2015|loc=chapter 6}}
  −
  −
'''[[贝叶斯网络]] Bayesian Networks ''' 是一个非常通用的工具,可用于各种问题: 推理(使用贝叶斯推断算法) ,学习(使用期望最大化算法) ,规划(使用决策网络)和感知(使用动态贝叶斯网络)。概率算法也可以用于滤波、预测、平滑和解释数据流,帮助传感系统分析随时间发生的过程(例如,隐马尔可夫模型或'''卡尔曼滤波器 Kalman Filters''')。与符号逻辑相比,形式化的贝叶斯推断逻辑运算量很大。为了使推理易于处理,大多数观察值必须彼此条件独立。含有菱形或其他“圈”(无向循环)的复杂图形可能需要比如马尔科夫-蒙特卡罗图的复杂方法,这种方法将一组随机行走遍布整个贝叶斯网络,并试图收敛到对条件概率的评估。贝叶斯网络在 Xbox Live 上被用来评估和匹配玩家:胜率是证明一个玩家有多有优秀的“证据”。AdSense使用一个有超过3亿条边的贝叶斯网络来学习如何推送广告的。
  −
  −
  −
A key concept from the science of economics is "[[utility]]": a measure of how valuable something is to an intelligent agent. Precise mathematical tools have been developed that analyze how an agent can make choices and plan, using [[decision theory]], [[decision analysis]],<ref name="Decisions theory and analysis"/> and [[applied information economics|information value theory]].<ref name="Information value theory"/> These tools include models such as [[Markov decision process]]es,<ref name="Markov decision process"/> dynamic [[decision network]]s,<ref name="Stochastic temporal models"/> [[game theory]] and [[mechanism design]].<ref name="Game theory and mechanism design"/>
      
经济学中的一个关键概念是“效用” :这是一种衡量某物对于一个智能主体的价值的方法。人们运用决策理论、决策分析和信息价值理论开发出了精确的数学工具来分析智能主体应该如何选择和计划。这些工具包括马尔可夫决策过程、动态决策网络、博弈论和机制设计等模型。
 
经济学中的一个关键概念是“效用” :这是一种衡量某物对于一个智能主体的价值的方法。人们运用决策理论、决策分析和信息价值理论开发出了精确的数学工具来分析智能主体应该如何选择和计划。这些工具包括马尔可夫决策过程、动态决策网络、博弈论和机制设计等模型。
    +
<br>
    
===分类器与统计学习方法===
 
===分类器与统计学习方法===
7,129

个编辑