打开主菜单
首页
随机
登录
设置
关于集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
免责声明
集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
搜索
更改
←上一编辑
下一编辑→
二项分布
(查看源代码)
2021年8月15日 (日) 18:56的版本
添加3字节
、
2021年8月15日 (日) 18:56
→条件二项式
第438行:
第438行:
将 <math> i = k - m </math> 代入上述表达式后,我们得到了
将 <math> i = k - m </math> 代入上述表达式后,我们得到了
−
这个分布是由雅各布伯努利
Jacob Bernoulli推导出来的。他考虑了p = r/(r + s)的情形,其中 p 是成功的概率,r 和 s 是正整数。早些时候,布莱斯 · 帕斯卡 Blaise Pascal考虑过p = 1/2的情况。
+
这个分布是由雅各布 ·伯努利
Jacob Bernoulli推导出来的。他考虑了p = r/(r + s)的情形,其中 p 是成功的概率,r 和 s 是正整数。早些时候,布莱斯 · 帕斯卡 Blaise Pascal考虑过p = 1/2的情况。
请注意,上述的和(括号内)等于<math> (p - pq + 1 - p)^{n-m} </math>由<font color="#ff8000">二项式定理 binomial theorem</font>得出。将此代入最终得到
请注意,上述的和(括号内)等于<math> (p - pq + 1 - p)^{n-m} </math>由<font color="#ff8000">二项式定理 binomial theorem</font>得出。将此代入最终得到
不是海绵宝宝
863
个编辑