第74行: |
第74行: |
| A compact topological space X is self-similar if there exists a finite set S indexing a set of non-surjective homeomorphisms <math>\{ f_s : s\in S \}</math> for which | | A compact topological space X is self-similar if there exists a finite set S indexing a set of non-surjective homeomorphisms <math>\{ f_s : s\in S \}</math> for which |
| | | |
− | 紧致拓扑空间 x 是自相似的,如果存在一个有限集 s 对 s / math 中的一组非满射同胚数学进行索引
| + | 如果存在一个有限集 ''S'' 对<math>\{ f_s : s\in S \}</math>中的一组非满射同胚集进行索引,则紧致拓扑空间 ''X'' 是自相似的,有: |
− | | |
− | | |
− | | |
− | :<math>X=\bigcup_{s\in S} f_s(X)</math>
| |
| | | |
| <math>X=\bigcup_{s\in S} f_s(X)</math> | | <math>X=\bigcup_{s\in S} f_s(X)</math> |
− |
| |
− | S } f (x) / math 中的数学 x 大杯
| |
− |
| |
− |
| |
| | | |
| If <math>X\subset Y</math>, we call ''X'' self-similar if it is the only [[Non-empty set|non-empty]] [[subset]] of ''Y'' such that the equation above holds for <math>\{ f_s : s\in S \} </math>. We call | | If <math>X\subset Y</math>, we call ''X'' self-similar if it is the only [[Non-empty set|non-empty]] [[subset]] of ''Y'' such that the equation above holds for <math>\{ f_s : s\in S \} </math>. We call |
| | | |
− | If <math>X\subset Y</math>, we call X self-similar if it is the only non-empty subset of Y such that the equation above holds for <math>\{ f_s : s\in S \} </math>. We call
| + | 假设有 |
| | | |
− | 如果数学 x 子集 y / math,我们称 x 自相似,如果它是 y 的唯一非空子集,使得上面的方程适用于数学 s: s / math。我们打电话
| + | <math>X\subset Y</math>, |
| | | |
| + | 当且仅当X是Y的唯一非空子集,使得上式对 |
| | | |
| + | <math>\{ f_s : s\in S \} </math> |
| | | |
− | :<math>\mathfrak{L}=(X,S,\{ f_s : s\in S \} )</math>
| + | 成立,则X是自相似的。而且我们称 |
| | | |
| <math>\mathfrak{L}=(X,S,\{ f_s : s\in S \} )</math> | | <math>\mathfrak{L}=(X,S,\{ f_s : s\in S \} )</math> |
| | | |
− | Math mathfrak { l }(x,s,f s: s in s) / math
| + | 是自相似结构。 |
− | | |
− | | |
| | | |
| a ''self-similar structure''. The homeomorphisms may be [[iterated function|iterated]], resulting in an [[iterated function system]]. The composition of functions creates the algebraic structure of a [[monoid]]. When the set ''S'' has only two elements, the monoid is known as the [[dyadic monoid]]. The dyadic monoid can be visualized as an infinite [[binary tree]]; more generally, if the set ''S'' has ''p'' elements, then the monoid may be represented as a [[p-adic number|p-adic]] tree. | | a ''self-similar structure''. The homeomorphisms may be [[iterated function|iterated]], resulting in an [[iterated function system]]. The composition of functions creates the algebraic structure of a [[monoid]]. When the set ''S'' has only two elements, the monoid is known as the [[dyadic monoid]]. The dyadic monoid can be visualized as an infinite [[binary tree]]; more generally, if the set ''S'' has ''p'' elements, then the monoid may be represented as a [[p-adic number|p-adic]] tree. |
− |
| |
− | a self-similar structure. The homeomorphisms may be iterated, resulting in an iterated function system. The composition of functions creates the algebraic structure of a monoid. When the set S has only two elements, the monoid is known as the dyadic monoid. The dyadic monoid can be visualized as an infinite binary tree; more generally, if the set S has p elements, then the monoid may be represented as a p-adic tree.
| |
| | | |
| 一个自相似的结构。同胚可以迭代,产生迭代函数系统。函数的组合创建了 monoid 的代数结构。当集合 s 只有两个元素时,这个幺半群称为二元幺半群。二元幺半群可以被视为一棵无限的二叉树,更一般地说,如果集合 s 有 p 个元素,那么幺半群可以被表示为一棵 p-adic 树。 | | 一个自相似的结构。同胚可以迭代,产生迭代函数系统。函数的组合创建了 monoid 的代数结构。当集合 s 只有两个元素时,这个幺半群称为二元幺半群。二元幺半群可以被视为一棵无限的二叉树,更一般地说,如果集合 s 有 p 个元素,那么幺半群可以被表示为一棵 p-adic 树。 |
− |
| |
− |
| |
| | | |
| The [[automorphism]]s of the dyadic monoid is the [[modular group]]; the automorphisms can be pictured as [[Hyperbolic coordinates|hyperbolic rotation]]s of the binary tree. | | The [[automorphism]]s of the dyadic monoid is the [[modular group]]; the automorphisms can be pictured as [[Hyperbolic coordinates|hyperbolic rotation]]s of the binary tree. |
第115行: |
第103行: |
| | | |
| 二元幺半群的自同构是模群,自同构可以描述为二叉树的双曲旋转。 | | 二元幺半群的自同构是模群,自同构可以描述为二叉树的双曲旋转。 |
− |
| |
− |
| |
| | | |
| A more general notion than self-similarity is [[Self-affinity]]. | | A more general notion than self-similarity is [[Self-affinity]]. |