打开主菜单
首页
随机
登录
设置
关于集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
免责声明
集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
搜索
更改
←上一编辑
下一编辑→
分形维数
(查看源代码)
2021年9月22日 (三) 21:37的版本
添加26字节
、
2021年9月22日 (三) 21:37
→概念
第31行:
第31行:
−
对于光滑的形状,或者有少量棱角的形状,传统几何和科学的形状,豪斯多夫维数是一个整数,与拓扑维度一致。但是[[Benoit Mandelbrot]]观察到[[分形]]——具有非整数豪斯多夫维数的集合---- 在自然界中随处可见。他观察到,我们周围大多数粗糙形状的理想化不是光滑的理想化形状,而是分形理想化形状:
+
对于光滑的形状,或者有少量棱角的形状,传统几何和科学的形状,豪斯多夫维数是一个整数,与拓扑维度一致。但是[[
伯努瓦·曼德布洛特
Benoit Mandelbrot]]观察到[[分形]]——具有非整数豪斯多夫维数的集合---- 在自然界中随处可见。他观察到,我们周围大多数粗糙形状的理想化不是光滑的理想化形状,而是分形理想化形状:
第40行:
第40行:
对于自然界中出现的分形,豪斯多夫维数和盒计数维数是一致的。封装尺寸是另一个类似的概念,它为许多形状提供相同的值,但是在所有这些尺寸不同的情况,都做了很好的说明。
对于自然界中出现的分形,豪斯多夫维数和盒计数维数是一致的。封装尺寸是另一个类似的概念,它为许多形状提供相同的值,但是在所有这些尺寸不同的情况,都做了很好的说明。
−
==形式化定义==
==形式化定义==
薄荷
7,129
个编辑