| The minimization of the Gibbs free energy is a form of the [[principle of minimum energy]], which follows from the [[entropy maximization principle]] for closed systems. Moreover, the Gibbs free energy equation, in modified form, can be utilized for [[open system (systems theory)|open systems]] when [[chemical potential]] terms are included in the energy balance equation. In a popular 1982 textbook, ''Principles of Biochemistry'', noted American biochemist [[Albert L. Lehninger|Albert Lehninger]] argued that the order produced within cells as they grow and divide is more than compensated for by the disorder they create in their surroundings in the course of growth and division. In short, according to Lehninger, "Living organisms preserve their internal order by taking from their surroundings [[Thermodynamic free energy|free energy]], in the form of nutrients or sunlight, and returning to their surroundings an equal amount of energy as heat and entropy."<ref name=":9">{{Cite book | last = Lehninger | first = Albert | title = Principles of Biochemistry, 2nd Ed. | publisher = Worth Publishers | year = 1993 | isbn = 978-0-87901-711-8 | url-access = registration | url = https://archive.org/details/isbn_9780879017118 }}</ref> | | The minimization of the Gibbs free energy is a form of the [[principle of minimum energy]], which follows from the [[entropy maximization principle]] for closed systems. Moreover, the Gibbs free energy equation, in modified form, can be utilized for [[open system (systems theory)|open systems]] when [[chemical potential]] terms are included in the energy balance equation. In a popular 1982 textbook, ''Principles of Biochemistry'', noted American biochemist [[Albert L. Lehninger|Albert Lehninger]] argued that the order produced within cells as they grow and divide is more than compensated for by the disorder they create in their surroundings in the course of growth and division. In short, according to Lehninger, "Living organisms preserve their internal order by taking from their surroundings [[Thermodynamic free energy|free energy]], in the form of nutrients or sunlight, and returning to their surroundings an equal amount of energy as heat and entropy."<ref name=":9">{{Cite book | last = Lehninger | first = Albert | title = Principles of Biochemistry, 2nd Ed. | publisher = Worth Publishers | year = 1993 | isbn = 978-0-87901-711-8 | url-access = registration | url = https://archive.org/details/isbn_9780879017118 }}</ref> |
− | 吉布斯自由能最小化是最小能量原理的一种形式,它遵循封闭系统的熵最大化原理。此外,当能量平衡方程中包含化学势时,修正的吉布斯自由能方程可适用于开放系统。美国著名生物化学家阿尔伯特 · 莱宁格(Albert Lehninger)在1982年出版的一本颇受欢迎的教科书《生物化学原理》中指出,细胞在生长和分裂过程中所产生的秩序,远远超过了它们在生长和分裂过程中在周围环境中所产生的混乱所能补偿的程度。简而言之,根据莱宁格的说法,“生物体通过从周围环境中获取营养或阳光等形式的自由量,并向周围环境返回与热量和熵等量的能量,从而保持其内部秩序<ref name=":9" />。” | + | 吉布斯自由能最小化是最小能量原理的一种形式,它遵循封闭系统的熵最大化原理。此外,当能量平衡方程中包含化学势时,修正的吉布斯自由能方程可适用于开放系统。美国著名生物化学家阿尔伯特 · 莱宁格(Albert Lehninger)在1982年出版的一本颇受欢迎的教科书《生物化学原理》中指出,细胞在生长和分裂过程中所产生的秩序,远远超过了它们在生长和分裂过程中在周围环境中所产生的混乱所能补偿的程度。简而言之,根据莱宁格的说法,“生物体通过从周围环境中获取营养或阳光等形式的自由能量,并以热量和熵的形式,向周围环境返还等量的能量,从而保持其内部秩序<ref name=":9" />。” |
| 在皇家学会学报上发表的一篇题为《最小行动的自然选择》的研究中,赫尔辛基大学的 Ville Kaila 和 Arto Annila 描述了如何从连通的非平衡开放系统的热力学第二定律方程式的表达式上,直接从数学上推导出导致这种局部增长的自然选择过程。热力学第二定律可以被写成一个描述进化的运动方程,在化学热力学方面来表述自然选择和最小行动原则是如何联系在一起的。在这种观点中,生物在进化过程中探索了能量密度差异的可能途径,从而最快速地增加熵。其中,有机体起着能量传递机制的作用,有益突变允许后代有机体在其环境中传递更多的能量<ref name="evo2lot" /><ref name=":13" />。 | | 在皇家学会学报上发表的一篇题为《最小行动的自然选择》的研究中,赫尔辛基大学的 Ville Kaila 和 Arto Annila 描述了如何从连通的非平衡开放系统的热力学第二定律方程式的表达式上,直接从数学上推导出导致这种局部增长的自然选择过程。热力学第二定律可以被写成一个描述进化的运动方程,在化学热力学方面来表述自然选择和最小行动原则是如何联系在一起的。在这种观点中,生物在进化过程中探索了能量密度差异的可能途径,从而最快速地增加熵。其中,有机体起着能量传递机制的作用,有益突变允许后代有机体在其环境中传递更多的能量<ref name="evo2lot" /><ref name=":13" />。 |