打开主菜单
首页
随机
登录
设置
关于集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
免责声明
集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
搜索
更改
←上一编辑
下一编辑→
玻尔兹曼分布
(查看源代码)
2021年10月26日 (二) 20:29的版本
添加1字节
、
2021年10月26日 (二) 20:29
→全同粒子与统计
第140行:
第140行:
===集智课程===
===集智课程===
====[https://campus.swarma.org/course/3095 全同粒子与统计]====
====[https://campus.swarma.org/course/3095 全同粒子与统计]====
−
::
在量子力学中,全同粒子具有不可区分性;粒子体系的哈密顿量具有交换不变性。两个粒子交换位置后,虽然哈密顿量具有不变性,但他们的波函数可以区分出两种情况,即对称波函数和反对称波函数,对应于玻色子和费米子。量子力学中的全同粒子不可分辨,两粒子互换后,与原状态没有区别,不表示新的微观态。微观态计数方法的不同,是经典统计和量子统计的重大区别。
\
+
在量子力学中,全同粒子具有不可区分性;粒子体系的哈密顿量具有交换不变性。两个粒子交换位置后,虽然哈密顿量具有不变性,但他们的波函数可以区分出两种情况,即对称波函数和反对称波函数,对应于玻色子和费米子。量子力学中的全同粒子不可分辨,两粒子互换后,与原状态没有区别,不表示新的微观态。微观态计数方法的不同,是经典统计和量子统计的重大区别。
−
::金潮渊老师讲解了光场量子化情形下,光子计数的波动范围遵循一定的统计规律。在可分辨粒子、全同费米子、全同玻色子情况下,微观粒子的三种统计分布,即麦克斯韦-玻尔兹曼统计、玻色-爱因斯坦统计、费米-狄拉克统计。在此基础上,引入狄拉克符号、表象变换、幺正算符等量子力学基本概念和HBT实验即第一个只能用量子理论解释的量子光学实验。
+
金潮渊老师讲解了光场量子化情形下,光子计数的波动范围遵循一定的统计规律。在可分辨粒子、全同费米子、全同玻色子情况下,微观粒子的三种统计分布,即麦克斯韦-玻尔兹曼统计、玻色-爱因斯坦统计、费米-狄拉克统计。在此基础上,引入狄拉克符号、表象变换、幺正算符等量子力学基本概念和HBT实验即第一个只能用量子理论解释的量子光学实验。
+
+
<br>
===集智文章===
===集智文章===
薄荷
7,129
个编辑