更改

删除1,095字节 、 2021年10月31日 (日) 17:19
第204行: 第204行:  
对于量子计算机的物理实现,人们正在寻找许多不同的候选方案,其中包括(以实现量子比特的物理系统为区别):
 
对于量子计算机的物理实现,人们正在寻找许多不同的候选方案,其中包括(以实现量子比特的物理系统为区别):
   −
*[[Superconducting quantum computing]]<ref name="ClarkeWilhelm2008">{{cite journal |last1=Clarke |first1=John |last2=Wilhelm |first2=Frank K. |title=Superconducting quantum bits |journal=Nature |date=18 June 2008 |volume=453 |issue=7198 |pages=1031–1042 |doi=10.1038/nature07128 |pmid=18563154 |bibcode=2008Natur.453.1031C|url=https://www.semanticscholar.org/paper/7ee1053ce63f33a62f2ea555547c514ce5f21054 }}</ref><ref>{{cite journal |last1=Kaminsky |first1=William M. |last2=Lloyd |first2=Seth |last3=Orlando |first3=Terry P. |title=Scalable Superconducting Architecture for Adiabatic Quantum Computation |arxiv=quant-ph/0403090 |date=12 March 2004 |bibcode=2004quant.ph..3090K }}</ref> (qubit implemented by the state of small superconducting circuits ([[Josephson junctions]])
+
*超导量子计算<ref name="ClarkeWilhelm2008">{{cite journal |last1=Clarke |first1=John |last2=Wilhelm |first2=Frank K. |title=Superconducting quantum bits |journal=Nature |date=18 June 2008 |volume=453 |issue=7198 |pages=1031–1042 |doi=10.1038/nature07128 |pmid=18563154 |bibcode=2008Natur.453.1031C|url=https://www.semanticscholar.org/paper/7ee1053ce63f33a62f2ea555547c514ce5f21054 }}</ref><ref>{{cite journal |last1=Kaminsky |first1=William M. |last2=Lloyd |first2=Seth |last3=Orlando |first3=Terry P. |title=Scalable Superconducting Architecture for Adiabatic Quantum Computation |arxiv=quant-ph/0403090 |date=12 March 2004 |bibcode=2004quant.ph..3090K }}</ref>(由小型超导电路状态实现的量子比特([[约瑟夫森结]])
*[[超导量子计算]]<ref name="ClarkeWilhelm2008">{{cite journal |last1=Clarke |first1=John |last2=Wilhelm |first2=Frank K. |title=Superconducting quantum bits |journal=Nature |date=18 June 2008 |volume=453 |issue=7198 |pages=1031–1042 |doi=10.1038/nature07128 |pmid=18563154 |bibcode=2008Natur.453.1031C|url=https://www.semanticscholar.org/paper/7ee1053ce63f33a62f2ea555547c514ce5f21054 }}</ref><ref>{{cite journal |last1=Kaminsky |first1=William M. |last2=Lloyd |first2=Seth |last3=Orlando |first3=Terry P. |title=Scalable Superconducting Architecture for Adiabatic Quantum Computation |arxiv=quant-ph/0403090 |date=12 March 2004 |bibcode=2004quant.ph..3090K }}</ref>(由小型超导电路状态实现的量子比特([[约瑟夫森结]])
+
*束缚离子量子计算机(由束缚离子的内部状态实现的量子比特)
*[[束缚离子量子计算机]](由束缚离子的内部状态实现的量子比特)
+
*光学晶格中的中性原子(由被困在光学晶格中的中性原子的内部状态实现的量子比特)<ref>{{Cite journal|last1=Khazali|first1=Mohammadsadegh|last2=Mølmer|first2=Klaus|date=2020-06-11|title=Fast Multiqubit Gates by Adiabatic Evolution in Interacting Excited-State Manifolds of Rydberg Atoms and Superconducting Circuits|journal=Physical Review X|volume=10|issue=2|pages=021054|doi=10.1103/PhysRevX.10.021054|bibcode=2020PhRvX..10b1054K|doi-access=free}}</ref><ref>{{Cite journal|last1=Henriet|first1=Loic|last2=Beguin|first2=Lucas|last3=Signoles|first3=Adrien|last4=Lahaye|first4=Thierry|last5=Browaeys|first5=Antoine|last6=Reymond|first6=Georges-Olivier|last7=Jurczak|first7=Christophe|date=2020-06-22|title=Quantum computing with neutral atoms|journal=Quantum|volume=4|page=327|doi=10.22331/q-2020-09-21-327|arxiv=2006.12326}}</ref>
*[[光学晶格]]s中的中性原子(由被困在光学晶格中的中性原子的内部状态实现的量子比特)<ref>{{Cite journal|last1=Khazali|first1=Mohammadsadegh|last2=Mølmer|first2=Klaus|date=2020-06-11|title=Fast Multiqubit Gates by Adiabatic Evolution in Interacting Excited-State Manifolds of Rydberg Atoms and Superconducting Circuits|journal=Physical Review X|volume=10|issue=2|pages=021054|doi=10.1103/PhysRevX.10.021054|bibcode=2020PhRvX..10b1054K|doi-access=free}}</ref><ref>{{Cite journal|last1=Henriet|first1=Loic|last2=Beguin|first2=Lucas|last3=Signoles|first3=Adrien|last4=Lahaye|first4=Thierry|last5=Browaeys|first5=Antoine|last6=Reymond|first6=Georges-Olivier|last7=Jurczak|first7=Christophe|date=2020-06-22|title=Quantum computing with neutral atoms|journal=Quantum|volume=4|page=327|doi=10.22331/q-2020-09-21-327|arxiv=2006.12326}}</ref>
+
*量子点计算机,基于自旋(例如[[Divencenzo损失差额量子计算机]]<ref>{{cite journal |last1=Imamog¯lu |first1=A. |last2=Awschalom |first2=D. D. |last3=Burkard |first3=G. |last4=DiVincenzo |first4=D. P. |last5=Loss |first5=D. |last6=Sherwin |first6=M. |last7=Small |first7=A. |title=Quantum Information Processing Using Quantum Dot Spins and Cavity QED |journal=Physical Review Letters |date=15 November 1999 |volume=83 |issue=20 |pages=4204–4207 |doi=10.1103/PhysRevLett.83.4204 |bibcode=1999PhRvL..83.4204I |arxiv=quant-ph/9904096}}</ref>)(量子比特由俘获电子的自旋态给出)
*[[量子点]]计算机,基于自旋(例如[[Divencenzo损失差额量子计算机]]<ref>{{cite journal |last1=Imamog¯lu |first1=A. |last2=Awschalom |first2=D. D. |last3=Burkard |first3=G. |last4=DiVincenzo |first4=D. P. |last5=Loss |first5=D. |last6=Sherwin |first6=M. |last7=Small |first7=A. |title=Quantum Information Processing Using Quantum Dot Spins and Cavity QED |journal=Physical Review Letters |date=15 November 1999 |volume=83 |issue=20 |pages=4204–4207 |doi=10.1103/PhysRevLett.83.4204 |bibcode=1999PhRvL..83.4204I |arxiv=quant-ph/9904096}}</ref>)(量子比特由俘获电子的自旋态给出)
   
*基于空间的量子点计算机(由双量子点中的电子位置给出的量子比特)<ref>{{cite journal |last1=Fedichkin |first1=L. |last2=Yanchenko |first2=M. |last3=Valiev |first3=K. A. |title=Novel coherent quantum bit using spatial quantization levels in semiconductor quantum dot |journal=Quantum Computers and Computing |date=June 2000 |volume=1 |page=58 |bibcode=2000quant.ph..6097F |arxiv=quant-ph/0006097 }}</ref>
 
*基于空间的量子点计算机(由双量子点中的电子位置给出的量子比特)<ref>{{cite journal |last1=Fedichkin |first1=L. |last2=Yanchenko |first2=M. |last3=Valiev |first3=K. A. |title=Novel coherent quantum bit using spatial quantization levels in semiconductor quantum dot |journal=Quantum Computers and Computing |date=June 2000 |volume=1 |page=58 |bibcode=2000quant.ph..6097F |arxiv=quant-ph/0006097 }}</ref>
 
*使用工程量子阱进行量子计算,原则上可以建造在室温下工作的量子计算机<ref>{{cite journal |last1=Ivády |first1=Viktor |last2=Davidsson |first2=Joel |last3=Delegan |first3=Nazar |last4=Falk |first4=Abram L. |last5=Klimov |first5=Paul V. |last6=Whiteley |first6=Samuel J. |last7=Hruszkewycz |first7=Stephan O. |last8=Holt |first8=Martin V. |last9=Heremans |first9=F. Joseph |last10=Son |first10=Nguyen Tien |last11=Awschalom |first11=David D. |last12=Abrikosov |first12=Igor A. |last13=Gali |first13=Adam |title=Stabilization of point-defect spin qubits by quantum wells |journal=Nature Communications |date=6 December 2019 |volume=10 |issue=1 |page=5607 |doi=10.1038/s41467-019-13495-6 |pmid=31811137 |pmc=6898666 |arxiv=1905.11801 |bibcode=2019NatCo..10.5607I }}</ref><ref>{{cite news |title=Scientists Discover New Way to Get Quantum Computing to Work at Room Temperature |url=https://interestingengineering.com/scientists-discover-new-way-to-get-quantum-computing-to-work-at-room-temperature |work=interestingengineering.com |date=24 April 2020 }}</ref>
 
*使用工程量子阱进行量子计算,原则上可以建造在室温下工作的量子计算机<ref>{{cite journal |last1=Ivády |first1=Viktor |last2=Davidsson |first2=Joel |last3=Delegan |first3=Nazar |last4=Falk |first4=Abram L. |last5=Klimov |first5=Paul V. |last6=Whiteley |first6=Samuel J. |last7=Hruszkewycz |first7=Stephan O. |last8=Holt |first8=Martin V. |last9=Heremans |first9=F. Joseph |last10=Son |first10=Nguyen Tien |last11=Awschalom |first11=David D. |last12=Abrikosov |first12=Igor A. |last13=Gali |first13=Adam |title=Stabilization of point-defect spin qubits by quantum wells |journal=Nature Communications |date=6 December 2019 |volume=10 |issue=1 |page=5607 |doi=10.1038/s41467-019-13495-6 |pmid=31811137 |pmc=6898666 |arxiv=1905.11801 |bibcode=2019NatCo..10.5607I }}</ref><ref>{{cite news |title=Scientists Discover New Way to Get Quantum Computing to Work at Room Temperature |url=https://interestingengineering.com/scientists-discover-new-way-to-get-quantum-computing-to-work-at-room-temperature |work=interestingengineering.com |date=24 April 2020 }}</ref>
*耦合的[[量子线|量子线]](量子比特由一对量子线实现,量子线通过一对量子线耦合[[量子点接触|量子点接触]])<ref>{{cite journal |last1=Bertoni |first1=A. |last2=Bordone |first2=P. |last3=Brunetti |first3=R. |last4=Jacoboni |first4=C. |last5=Reggiani |first5=S. |title=Quantum Logic Gates based on Coherent Electron Transport in Quantum Wires |journal=Physical Review Letters |date=19 June 2000 |volume=84 |issue=25 |pages=5912–5915 |doi=10.1103/PhysRevLett.84.5912 |pmid=10991086 |bibcode=2000PhRvL..84.5912B |hdl=11380/303796|hdl-access=free }}</ref><ref>{{cite journal |last1=Ionicioiu |first1=Radu |last2=Amaratunga |first2=Gehan |last3=Udrea |first3=Florin |title=Quantum Computation with Ballistic Electrons |journal=International Journal of Modern Physics B |date=20 January 2001 |volume=15 |issue=2 |pages=125–133 |doi=10.1142/S0217979201003521 |arxiv=quant-ph/0011051 |bibcode=2001IJMPB..15..125I |citeseerx=10.1.1.251.9617 }}</ref><ref>{{cite journal |last1=Ramamoorthy |first1=A |last2=Bird |first2=J P |last3=Reno |first3=J L |title=Using split-gate structures to explore the implementation of a coupled-electron-waveguide qubit scheme |journal=Journal of Physics: Condensed Matter |date=11 July 2007 |volume=19 |issue=27 |pages=276205 |doi=10.1088/0953-8984/19/27/276205 |bibcode=2007JPCM...19A6205R }}</ref>
+
*耦合的量子线(量子比特由一对量子线实现,量子线通过一对量子线耦合量子点接触)<ref>{{cite journal |last1=Bertoni |first1=A. |last2=Bordone |first2=P. |last3=Brunetti |first3=R. |last4=Jacoboni |first4=C. |last5=Reggiani |first5=S. |title=Quantum Logic Gates based on Coherent Electron Transport in Quantum Wires |journal=Physical Review Letters |date=19 June 2000 |volume=84 |issue=25 |pages=5912–5915 |doi=10.1103/PhysRevLett.84.5912 |pmid=10991086 |bibcode=2000PhRvL..84.5912B |hdl=11380/303796|hdl-access=free }}</ref><ref>{{cite journal |last1=Ionicioiu |first1=Radu |last2=Amaratunga |first2=Gehan |last3=Udrea |first3=Florin |title=Quantum Computation with Ballistic Electrons |journal=International Journal of Modern Physics B |date=20 January 2001 |volume=15 |issue=2 |pages=125–133 |doi=10.1142/S0217979201003521 |arxiv=quant-ph/0011051 |bibcode=2001IJMPB..15..125I |citeseerx=10.1.1.251.9617 }}</ref><ref>{{cite journal |last1=Ramamoorthy |first1=A |last2=Bird |first2=J P |last3=Reno |first3=J L |title=Using split-gate structures to explore the implementation of a coupled-electron-waveguide qubit scheme |journal=Journal of Physics: Condensed Matter |date=11 July 2007 |volume=19 |issue=27 |pages=276205 |doi=10.1088/0953-8984/19/27/276205 |bibcode=2007JPCM...19A6205R }}</ref>
*[[核磁共振量子计算机]](NMRQC)利用溶液中分子的[[核磁共振]]来实现,其中量子比特由溶解分子中的[[核自旋]]s提供,并被无线电波探测
+
*核磁共振量子计算机(NMRQC)利用溶液中分子的核磁共振来实现,其中量子比特由溶解分子中的核自旋提供,并被无线电波探测
*固态NMR[[Kane量子计算机]]s(由[[磷]][[电子供体|供体]]在[[硅]]中的核自旋态实现的量子比特)
+
*固态NMR Kane量子计算机](由磷电子供体在硅中的核自旋态实现的量子比特)
 
*量子计算机上的电子(量子比特是电子的自旋)
 
*量子计算机上的电子(量子比特是电子的自旋)
*[[腔量子电动力学]](CQED)(由与高精细腔耦合的被俘获原子的内部状态提供的量子比特)
+
*腔量子电动力学(CQED)(由与高精细腔耦合的被俘获原子的内部状态提供的量子比特)
*[[单分子磁体|分子磁体]](量子比特由自旋态给出)<ref>{{cite journal |last1=Leuenberger |first1=Michael N. |last2=Loss |first2=Daniel |title=Quantum computing in molecular magnets |journal=Nature |date=April 2001 |volume=410 |issue=6830 |pages=789–793 |doi=10.1038/35071024 |pmid=11298441 |arxiv=cond-mat/0011415 |bibcode=2001Natur.410..789L }}</ref>
+
*单分子磁体(量子比特由自旋态给出)<ref>{{cite journal |last1=Leuenberger |first1=Michael N. |last2=Loss |first2=Daniel |title=Quantum computing in molecular magnets |journal=Nature |date=April 2001 |volume=410 |issue=6830 |pages=789–793 |doi=10.1038/35071024 |pmid=11298441 |arxiv=cond-mat/0011415 |bibcode=2001Natur.410..789L }}</ref>
*基于[[富勒烯]]的[[电子顺磁共振| ESR]]<ref>{{cite journal |last1=Harneit |first1=Wolfgang |title=Fullerene-based electron-spin quantum computer |journal= Physical Review A|date=27 February 2002 |volume=65 |issue=3 |page=032322 |doi=10.1103/PhysRevA.65.032322 |bibcode=2002PhRvA..65c2322H }}https://www.researchgate.net/publication/257976907_Fullerene-based_electron-spin_quantum_computer</ref>量子计算机(基于[[内表面富勒烯|被富勒烯包围的原子或分子的电子自旋的量子比特])
+
*基于富勒烯的电子顺磁共振<ref>{{cite journal |last1=Harneit |first1=Wolfgang |title=Fullerene-based electron-spin quantum computer |journal= Physical Review A|date=27 February 2002 |volume=65 |issue=3 |page=032322 |doi=10.1103/PhysRevA.65.032322 |bibcode=2002PhRvA..65c2322H }}https://www.researchgate.net/publication/257976907_Fullerene-based_electron-spin_quantum_computer</ref>量子计算机(基于内表面富勒烯)
 
<math>\mathsf{P \subseteq BPP \subseteq BQP \subseteq PP \subseteq PSPACE}</math>
 
<math>\mathsf{P \subseteq BPP \subseteq BQP \subseteq PP \subseteq PSPACE}</math>
*[[光学量子计算|非线性光学量子计算机]](通过线性和[[非线性光学|非线性]]元件处理光的不同[[正常模式|模式]]状态实现的量子比特)<ref name="qc1988">K. Igeta and Y. Yamamoto. "Quantum mechanical computers with single atom and photon fields." International Quantum Electronics Conference (1988) https://www.osapublishing.org/abstract.cfm?uri=IQEC-1988-TuI4</ref><ref name="chuang1995">I.L. Chuang and Y. Yamamoto. "Simple quantum computer." Physical Review A 52, 5, 3489 (1995) https://doi.org/10.1103/PhysRevA.52.3489</ref>
+
*非线性光学量子计算机(通过线性和非线性光学元件处理光的不同模式状态实现的量子比特)<ref name="qc1988">K. Igeta and Y. Yamamoto. "Quantum mechanical computers with single atom and photon fields." International Quantum Electronics Conference (1988) https://www.osapublishing.org/abstract.cfm?uri=IQEC-1988-TuI4</ref><ref name="chuang1995">I.L. Chuang and Y. Yamamoto. "Simple quantum computer." Physical Review A 52, 5, 3489 (1995) https://doi.org/10.1103/PhysRevA.52.3489</ref>
*[[线性光学量子计算|线性光学量子计算机]](通过线性元件(如反射镜、[[分束器]]和[[相移模块|移相器]]处理光的不同[[正常模式|模式]]状态实现的量子比特)<ref name="KLM2001">{{cite journal |last1=Knill |first1=G. J. |last2=Laflamme |last3=Milburn |title=A scheme for efficient quantum computation with linear optics |journal=Nature |year=2001 |volume=409 |doi=10.1038/35051009 |bibcode = 2001Natur.409...46K |first2=R. |first3=G. J. |issue=6816 |pmid=11343107 |pages=46–52|url=https://www.semanticscholar.org/paper/054b680165a7325569ca6e63028ca9cee7f3ac9a }}</ref>
+
*线性光学量子计算(通过线性元件(如反射镜、分束器和移相器处理光的不同模式状态实现的量子比特)<ref name="KLM2001">{{cite journal |last1=Knill |first1=G. J. |last2=Laflamme |last3=Milburn |title=A scheme for efficient quantum computation with linear optics |journal=Nature |year=2001 |volume=409 |doi=10.1038/35051009 |bibcode = 2001Natur.409...46K |first2=R. |first3=G. J. |issue=6816 |pmid=11343107 |pages=46–52|url=https://www.semanticscholar.org/paper/054b680165a7325569ca6e63028ca9cee7f3ac9a }}</ref>
*[[金刚石量子计算机]]<ref name="Nizovtsevetal2004">{{cite journal|journal = Optics and Spectroscopy|date = August 2005|title = A quantum computer based on NV centers in diamond: Optically detected nutations of single electron and nuclear spins|author = Nizovtsev, A. P.|volume = 99 |issue = 2|pages = 248–260|doi = 10.1134/1.2034610|bibcode = 2005OptSp..99..233N |url = https://www.semanticscholar.org/paper/a7598ca24265e5537f14dc61b7c3a1d5b5953162}}</ref><ref>{{cite journal |last1=Dutt |first1=M. V. G. |last2=Childress |first2=L. |last3=Jiang |first3=L. |last4=Togan |first4=E. |last5=Maze |first5=J. |last6=Jelezko |first6=F. |last7=Zibrov |first7=A. S. |last8=Hemmer |first8=P. R. |last9=Lukin |first9=M. D. |title=Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond |journal=Science |date=1 June 2007 |volume=316 |issue=5829 |pages=1312–1316 |doi=10.1126/science.1139831 |pmid=17540898 |lay-url=https://news.harvard.edu/gazette/story/2007/06/single-spinning-nuclei-in-diamond-offer-a-stable-quantum-computing-building-block/ |bibcode=2007Sci...316.....D }}</ref><ref name="Neumannetal2008">{{cite journal|journal = Science|date = 6 June 2008|title = Multipartite Entanglement Among Single Spins in Diamond|author = Neumann, P.|volume = 320|issue = 5881
+
*金刚石量子计算机<ref name="Nizovtsevetal2004">{{cite journal|journal = Optics and Spectroscopy|date = August 2005|title = A quantum computer based on NV centers in diamond: Optically detected nutations of single electron and nuclear spins|author = Nizovtsev, A. P.|volume = 99 |issue = 2|pages = 248–260|doi = 10.1134/1.2034610|bibcode = 2005OptSp..99..233N |url = https://www.semanticscholar.org/paper/a7598ca24265e5537f14dc61b7c3a1d5b5953162}}</ref><ref>{{cite journal |last1=Dutt |first1=M. V. G. |last2=Childress |first2=L. |last3=Jiang |first3=L. |last4=Togan |first4=E. |last5=Maze |first5=J. |last6=Jelezko |first6=F. |last7=Zibrov |first7=A. S. |last8=Hemmer |first8=P. R. |last9=Lukin |first9=M. D. |title=Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond |journal=Science |date=1 June 2007 |volume=316 |issue=5829 |pages=1312–1316 |doi=10.1126/science.1139831 |pmid=17540898 |lay-url=https://news.harvard.edu/gazette/story/2007/06/single-spinning-nuclei-in-diamond-offer-a-stable-quantum-computing-building-block/ |bibcode=2007Sci...316.....D }}</ref><ref name="Neumannetal2008">{{cite journal|journal = Science|date = 6 June 2008|title = Multipartite Entanglement Among Single Spins in Diamond|author = Neumann, P.|volume = 320|issue = 5881
 
|pages = 1326–1329|doi = 10.1126/science.1157233|pmid = 18535240|bibcode = 2008Sci...320.1326N|display-authors = 1|last2 = Mizuochi|first2 = N.|last3 = Rempp|first3 = F.|last4 = Hemmer
 
|pages = 1326–1329|doi = 10.1126/science.1157233|pmid = 18535240|bibcode = 2008Sci...320.1326N|display-authors = 1|last2 = Mizuochi|first2 = N.|last3 = Rempp|first3 = F.|last4 = Hemmer
 
|first4 = P.|last5 = Watanabe|first5 = H.|last6 = Yamasaki|first6 = S.|last7 = Jacques|first7 = V.|last8 = Gaebel|first8 = T.|last9 = Jelezko|first9 = F. }}</ref>(通过金刚石中氮空位中心的电子或核自旋实现的量子比特)
 
|first4 = P.|last5 = Watanabe|first5 = H.|last6 = Yamasaki|first6 = S.|last7 = Jacques|first7 = V.|last8 = Gaebel|first8 = T.|last9 = Jelezko|first9 = F. }}</ref>(通过金刚石中氮空位中心的电子或核自旋实现的量子比特)
第234行: 第233行:  
大量的候选方案表明,尽管量子计算技术发展迅速,但仍处于初级阶段。
 
大量的候选方案表明,尽管量子计算技术发展迅速,但仍处于初级阶段。
    +
<br>
    
==与可计算性和复杂性理论的关系==
 
==与可计算性和复杂性理论的关系==
7,129

个编辑