第89行: |
第89行: |
| | | |
| where Δ''f'' is the ''total'' change in ''f''. Dividing ({{EquationNote|1}}) by <math> d^3\bf{r}</math> <math> d^3\bf{p}</math> Δ''t'' and taking the limits Δ''t'' → 0 and Δ''f'' → 0, we have{{NumBlk|2=<math>\frac{d f}{d t} = \left(\frac{\partial f}{\partial t} \right)_\mathrm{coll}</math>|3={{EquationRef|2}}}} | | where Δ''f'' is the ''total'' change in ''f''. Dividing ({{EquationNote|1}}) by <math> d^3\bf{r}</math> <math> d^3\bf{p}</math> Δ''t'' and taking the limits Δ''t'' → 0 and Δ''f'' → 0, we have{{NumBlk|2=<math>\frac{d f}{d t} = \left(\frac{\partial f}{\partial t} \right)_\mathrm{coll}</math>|3={{EquationRef|2}}}} |
− |
| |
| | | |
| The total [[differential of a function|differential]] of ''f'' is: | | The total [[differential of a function|differential]] of ''f'' is: |
− | | + | {{NumBlk|:|<math>\begin{align} |
− | | + | d f & = \frac{\partial f}{\partial t} \, dt |
| + | +\left(\frac{\partial f}{\partial x} \, dx |
| + | +\frac{\partial f}{\partial y} \, dy |
| + | +\frac{\partial f}{\partial z} \, dz |
| + | \right) |
| + | +\left(\frac{\partial f}{\partial p_x} \, dp_x |
| + | +\frac{\partial f}{\partial p_y} \, dp_y |
| + | +\frac{\partial f}{\partial p_z} \, dp_z |
| + | \right)\\[5pt] |
| + | & = \frac{\partial f}{\partial t}dt +\nabla f \cdot d\mathbf{r} + \frac{\partial f}{\partial \mathbf{p}}\cdot d\mathbf{p} \\[5pt] |
| + | & = \frac{\partial f}{\partial t}dt +\nabla f \cdot \frac{\mathbf{p}}{m}dt + \frac{\partial f}{\partial \mathbf{p}}\cdot \mathbf{F} \, dt |
| + | \end{align}</math>|{{EquationRef|3}}}} |
| | | |
| | | |
| where ∇ is the [[gradient]] operator, '''·''' is the [[dot product]], | | where ∇ is the [[gradient]] operator, '''·''' is the [[dot product]], |
− |
| |
− |
| |
| :<math> | | :<math> |
| | | |
第104行: |
第112行: |
| | | |
| </math> | | </math> |
− |
| |
− |
| |
| | | |
| is a shorthand for the momentum analogue of ∇, and '''ê'''<sub>''x''</sub>, '''ê'''<sub>''y''</sub>, '''ê'''<sub>''z''</sub> are [[cartesian coordinates|Cartesian]] [[unit vector]]s. | | is a shorthand for the momentum analogue of ∇, and '''ê'''<sub>''x''</sub>, '''ê'''<sub>''y''</sub>, '''ê'''<sub>''z''</sub> are [[cartesian coordinates|Cartesian]] [[unit vector]]s. |
− |
| |
− |
| |
| ===Final statement=== | | ===Final statement=== |
| | | |
第263行: |
第267行: |
| | | |
| 20世纪90年代物理宇宙学,完全协变方法被用于研究宇宙微波背景辐射。更一般地说,对早期宇宙过程的研究往往试图考虑量子力学和广义相对论的影响。 | | 20世纪90年代物理宇宙学,完全协变方法被用于研究宇宙微波背景辐射。更一般地说,对早期宇宙过程的研究往往试图考虑量子力学和广义相对论的影响。 |
− | {{NumBlk|:|
| |
− |
| |
− | <math>\begin{align}
| |
− |
| |
− | d f & = \frac{\partial f}{\partial t} \, dt
| |
− |
| |
− | +\left(\frac{\partial f}{\partial x} \, dx
| |
− |
| |
− | +\frac{\partial f}{\partial y} \, dy
| |
− |
| |
− |
| |
− | +\frac{\partial f}{\partial z} \, dz
| |
− |
| |
− | \right)
| |
− |
| |
− | +\left(\frac{\partial f}{\partial p_x} \, dp_x
| |
− |
| |
− | +\frac{\partial f}{\partial p_y} \, dp_y
| |
− |
| |
− | +\frac{\partial f}{\partial p_z} \, dp_z
| |
− |
| |
− |
| |
− | \right)\\[5pt]
| |
− |
| |
− | & = \frac{\partial f}{\partial t}dt +\nabla f \cdot d\mathbf{r} + \frac{\partial f}{\partial \mathbf{p}}\cdot d\mathbf{p} \\[5pt]
| |
− |
| |
− | & = \frac{\partial f}{\partial t}dt +\nabla f \cdot \frac{\mathbf{p}}{m}dt + \frac{\partial f}{\partial \mathbf{p}}\cdot \mathbf{F} \, dt
| |
− |
| |
− | \end{align}</math>
| |
− |
| |
− | |{{EquationRef|3}}}}
| |
| == 方程求解 == | | == 方程求解 == |
| this analytical approach provides insight, but is not generally usable in practical problems. | | this analytical approach provides insight, but is not generally usable in practical problems. |