更改

添加17字节 、 2021年11月3日 (三) 11:09
第93行: 第93行:     
Note that we have used the fact that the phase space volume element <math> d^3\bf{r}</math>&nbsp;<math> d^3\bf{p}</math> is constant, which can be shown using [[Hamilton's equations]] (see the discussion under [[Liouville's theorem (Hamiltonian)|Liouville's theorem]]). However, since collisions do occur, the particle density in the phase-space volume <math> d^3\bf{r}</math>&nbsp;'<math> d^3\bf{p}</math> changes, so{{NumBlk|2=<math>\begin{align}
 
Note that we have used the fact that the phase space volume element <math> d^3\bf{r}</math>&nbsp;<math> d^3\bf{p}</math> is constant, which can be shown using [[Hamilton's equations]] (see the discussion under [[Liouville's theorem (Hamiltonian)|Liouville's theorem]]). However, since collisions do occur, the particle density in the phase-space volume <math> d^3\bf{r}</math>&nbsp;'<math> d^3\bf{p}</math> changes, so{{NumBlk|2=<math>\begin{align}
dN_{coll}&= \left ( \frac{\partial f}{\partial t} \right )_{coll}\Delta td^{3}\textbf{r}\, d^{3}\textbf{p}
+
dN_{coll} &= \left ( \frac{\partial f}{\partial t} \right )_{coll}\Delta td^{3}\textbf{r}\, d^{3}\textbf{p}\\[5pt]
&= f\left ( \textbf{r}+\frac{\textbf{p}}{m}\Delta t,\textbf{p}+\textbf{F}\Delta t,t+\Delta t \right )\, d^{3}\textbf{r}\, d^{3}\textbf{p}- f(\textbf{r},\textbf{p},t)\, d^{3}\textbf{r}\, d^{3}\textbf{p}
+
& = f\left ( \textbf{r}+\frac{\textbf{p}}{m}\Delta t,\textbf{p}+\textbf{F}\Delta t,t+\Delta t \right )\, d^{3}\textbf{r}\, d^{3}\textbf{p}- f(\textbf{r},\textbf{p},t)\, d^{3}\textbf{r}\, d^{3}\textbf{p}\\[5pt]
&=\Delta f d^{3}\textbf{r}\, d^{3}\textbf{p}
+
& =\Delta f d^{3}\textbf{r}\, d^{3}\textbf{p}
 
\end{align}</math>|3={{EquationRef|1}}|:}}
 
\end{align}</math>|3={{EquationRef|1}}|:}}
  
596

个编辑