Suppose at time <math> t</math> some number of particles all have position '''<math> r</math>''' within element <math> d^3\bf{r}</math> and momentum '''<math> p</math>''' within <math> d^3\bf{p}</math>. If a force '''<math> F</math>''' instantly acts on each particle, then at time <math> t+\Delta t</math> their position will be <math> \mathbf{r}+\Delta \mathbf{r}= \textbf{r}+\frac{\textbf{p}}{m}\Delta t</math> and momentum <math> \mathbf{p}+\Delta \mathbf{p}= \mathbf{p}+\mathbf{F}\Delta t</math>. Then, in the absence of collisions, <math> f</math> must satisfy | Suppose at time <math> t</math> some number of particles all have position '''<math> r</math>''' within element <math> d^3\bf{r}</math> and momentum '''<math> p</math>''' within <math> d^3\bf{p}</math>. If a force '''<math> F</math>''' instantly acts on each particle, then at time <math> t+\Delta t</math> their position will be <math> \mathbf{r}+\Delta \mathbf{r}= \textbf{r}+\frac{\textbf{p}}{m}\Delta t</math> and momentum <math> \mathbf{p}+\Delta \mathbf{p}= \mathbf{p}+\mathbf{F}\Delta t</math>. Then, in the absence of collisions, <math> f</math> must satisfy |