第14行: |
第14行: |
| The Boltzmann equation can be used to determine how physical quantities change, such as [[heat]] energy and [[momentum]], when a fluid is in transport. One may also derive other properties characteristic to fluids such as [[viscosity]], [[thermal conductivity]], and [[electrical conductivity]] (by treating the charge carriers in a material as a gas).<ref name="Encyclopaediaof" /> See also [[convection–diffusion equation]]. | | The Boltzmann equation can be used to determine how physical quantities change, such as [[heat]] energy and [[momentum]], when a fluid is in transport. One may also derive other properties characteristic to fluids such as [[viscosity]], [[thermal conductivity]], and [[electrical conductivity]] (by treating the charge carriers in a material as a gas).<ref name="Encyclopaediaof" /> See also [[convection–diffusion equation]]. |
| | | |
− | 玻尔兹曼方程可以用来确定流体在运输过程中物理量如何变化,比如热能和动量。人们还可以推导出流体的其他特性,如粘度、热导率和电导率(通过将材料中的载流子当作气体来处理)。<ref name="Encyclopaediaof" /> 参见[[对流扩散方程]]。
| + | 在流体运输过程中,玻尔兹曼方程可以用来确定物理量如何变化,比如热能和动量。人们还可以推导出流体的其他特性,如粘度、热导率和电导率(通过将材料中的载流子当作气体来处理)。<ref name="Encyclopaediaof" /> 参见[[对流扩散方程]]。 |
| | | |
| The equation is a [[Nonlinear system|nonlinear]] [[integro-differential equation]], and the unknown function in the equation is a probability density function in six-dimensional space of a particle position and momentum. The problem of existence and uniqueness of solutions is still not fully resolved, but some recent results are quite promising.<ref name=":0">DiPerna, R. J.; Lions, P.-L. (1989). "On the Cauchy problem for Boltzmann equations: global existence and weak stability". ''Ann. of Math''. 2. '''130''' (2): 321–366. doi:10.2307/1971423. JSTOR 1971423. | | The equation is a [[Nonlinear system|nonlinear]] [[integro-differential equation]], and the unknown function in the equation is a probability density function in six-dimensional space of a particle position and momentum. The problem of existence and uniqueness of solutions is still not fully resolved, but some recent results are quite promising.<ref name=":0">DiPerna, R. J.; Lions, P.-L. (1989). "On the Cauchy problem for Boltzmann equations: global existence and weak stability". ''Ann. of Math''. 2. '''130''' (2): 321–366. doi:10.2307/1971423. JSTOR 1971423. |
第277行: |
第277行: |
| It is possible to write down relativistic [[wikipedia:Quantum_Boltzmann_equation|quantum Boltzmann equations]] for [[wikipedia:Quantum_field_theory|relativistic]] quantum systems in which the number of particles is not conserved in collisions. This has several applications in [[wikipedia:Physical_cosmology|physical cosmology]],<ref name="KolbTurner">{{cite book|author1=Edward Kolb|author2=Michael Turner|name-list-style=amp|title=The Early Universe|year=1990|publisher=Westview Press|isbn=9780201626742}}</ref> including the formation of the light elements in [[wikipedia:Big_Bang_nucleosynthesis|Big Bang nucleosynthesis]], the production of [[wikipedia:Dark_matter|dark matter]] and [[wikipedia:Baryogenesis|baryogenesis]]. It is not a priori clear that the state of a quantum system can be characterized by a classical phase space density ''f''. However, for a wide class of applications a well-defined generalization of ''f'' exists which is the solution of an effective Boltzmann equation that can be derived from first principles of [[wikipedia:Quantum_field_theory|quantum field theory]].<ref name="BEfromQFT">M. Drewes; C. Weniger; S. Mendizabal (8 January 2013). "The Boltzmann equation from quantum field theory". ''Phys. Lett. B''. 718 (3): 1119–1124. arXiv:1202.1301. Bibcode:2013PhLB..718.1119D. doi:10.1016/j.physletb.2012.11.046. S2CID 119253828.</ref> | | It is possible to write down relativistic [[wikipedia:Quantum_Boltzmann_equation|quantum Boltzmann equations]] for [[wikipedia:Quantum_field_theory|relativistic]] quantum systems in which the number of particles is not conserved in collisions. This has several applications in [[wikipedia:Physical_cosmology|physical cosmology]],<ref name="KolbTurner">{{cite book|author1=Edward Kolb|author2=Michael Turner|name-list-style=amp|title=The Early Universe|year=1990|publisher=Westview Press|isbn=9780201626742}}</ref> including the formation of the light elements in [[wikipedia:Big_Bang_nucleosynthesis|Big Bang nucleosynthesis]], the production of [[wikipedia:Dark_matter|dark matter]] and [[wikipedia:Baryogenesis|baryogenesis]]. It is not a priori clear that the state of a quantum system can be characterized by a classical phase space density ''f''. However, for a wide class of applications a well-defined generalization of ''f'' exists which is the solution of an effective Boltzmann equation that can be derived from first principles of [[wikipedia:Quantum_field_theory|quantum field theory]].<ref name="BEfromQFT">M. Drewes; C. Weniger; S. Mendizabal (8 January 2013). "The Boltzmann equation from quantum field theory". ''Phys. Lett. B''. 718 (3): 1119–1124. arXiv:1202.1301. Bibcode:2013PhLB..718.1119D. doi:10.1016/j.physletb.2012.11.046. S2CID 119253828.</ref> |
| | | |
− | 对于碰撞中粒子数不守恒的相对论量子系统,给出相对论量子玻尔兹曼方程是可能的。这在物理宇宙学中有一些应用<ref name="KolbTurner" />,包括大爆炸核合成中轻元素的形成,暗物质的产生和重子发生。我们并不预先知道量子系统的状态可以用经典相空间密度''f'' 来表征。然而,对于许多应用来说,定义良好的''f'' 作为有效玻尔兹曼方程的解是存在的,可以由[[wikipedia:Quantum_field_theory|量子场论]]的第一原理推导得出。 | + | 对于碰撞中粒子数不守恒的相对论量子系统,给出相对论量子玻尔兹曼方程是可能的。这在物理宇宙学中有一些应用<ref name="KolbTurner" />,包括大爆炸核合成中轻元素的形成,暗物质的产生和重子发生。我们并不预先知道量子系统的状态可以用经典相空间密度''f'' 来表征。然而,对于许多应用来说,定义良好的''f'' 作为有效玻尔兹曼方程的解是存在的,可以由[[wikipedia:Quantum_field_theory|量子场论 Quantum_field_theory]]的第一原理推导得出。 |
| | | |
| ===General relativity and astronomy 广义相对论和天文学=== | | ===General relativity and astronomy 广义相对论和天文学=== |