Since much of the challenge in solving the Boltzmann equation originates with the complex collision term, attempts have been made to "model" and simplify the collision term. The best known model equation is due to Bhatnagar, Gross and Krook.<ref name=":4">{{Cite journal|title=A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems|journal=Physical Review|date=1954-05-01|pages=511–525|volume=94|issue=3|doi=10.1103/PhysRev.94.511|first1=P. L.|last1=Bhatnagar|first2=E. P.|last2=Gross|first3=M.|last3=Krook|bibcode=1954PhRv...94..511B}}</ref> The assumption in the BGK approximation is that the effect of molecular collisions is to force a non-equilibrium distribution function at a point in physical space back to a Maxwellian equilibrium distribution function and that the rate at which this occurs is proportional to the molecular collision frequency. The Boltzmann equation is therefore modified to the BGK form: | Since much of the challenge in solving the Boltzmann equation originates with the complex collision term, attempts have been made to "model" and simplify the collision term. The best known model equation is due to Bhatnagar, Gross and Krook.<ref name=":4">{{Cite journal|title=A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems|journal=Physical Review|date=1954-05-01|pages=511–525|volume=94|issue=3|doi=10.1103/PhysRev.94.511|first1=P. L.|last1=Bhatnagar|first2=E. P.|last2=Gross|first3=M.|last3=Krook|bibcode=1954PhRv...94..511B}}</ref> The assumption in the BGK approximation is that the effect of molecular collisions is to force a non-equilibrium distribution function at a point in physical space back to a Maxwellian equilibrium distribution function and that the rate at which this occurs is proportional to the molecular collision frequency. The Boltzmann equation is therefore modified to the BGK form: |