第231行: |
第231行: |
| Since the conservation equations involve tensors, the Einstein summation convention will be used where repeated indices in a product indicate summation over those indices. Thus <math>\mathbf{x} \mapsto x_i</math> and <math>\mathbf{p} \mapsto p_i = m w_i</math>, where <math>w_i</math> is the particle velocity vector. Define <math>A(p_i)</math> as some function of momentum <math>p_i</math> only, which is conserved in a collision. Assume also that the force <math>F_i</math> is a function of position only, and that ''f'' is zero for <math>p_i \to \pm\infty</math>. Multiplying the Boltzmann equation by ''A'' and integrating over momentum yields four terms, which, using integration by parts, can be expressed as | | Since the conservation equations involve tensors, the Einstein summation convention will be used where repeated indices in a product indicate summation over those indices. Thus <math>\mathbf{x} \mapsto x_i</math> and <math>\mathbf{p} \mapsto p_i = m w_i</math>, where <math>w_i</math> is the particle velocity vector. Define <math>A(p_i)</math> as some function of momentum <math>p_i</math> only, which is conserved in a collision. Assume also that the force <math>F_i</math> is a function of position only, and that ''f'' is zero for <math>p_i \to \pm\infty</math>. Multiplying the Boltzmann equation by ''A'' and integrating over momentum yields four terms, which, using integration by parts, can be expressed as |
| | | |
− | 由于守恒方程中包含张量,以下使用'''[[wikipedia:Einstein notation|爱因斯坦求和约定 Einstein Summation Convention]]'''简化标记,即 <math>\mathbf{x}\rightarrow x_i</math> 且 <math>\mathbf{p}\rightarrow p_i = m w_i</math>,其中 <math>w_i</math> 为粒子速度矢量。定义某函数 <math>A(p_i)</math>,使得其唯一的自变量为动量 <math>p_i</math>(碰撞中动量守恒)。假设力 <math>F_i</math> 为位置的函数,且对于 <math>p_i\rightarrow\pm \infty</math>,<math>f</math> 为 0。对玻尔兹曼方程两边同乘 <math>A</math> ,并对动量积分,使用分部积分法可得四项。如下所示: | + | 由于守恒方程中包含张量,以下使用'''[[wikipedia:Einstein notation|爱因斯坦求和约定 Einstein Summation Convention]]''',乘积中的重复标记表示对这些带有标记量的求和。因此 <math>\mathbf{x}\rightarrow x_i</math> 且 <math>\mathbf{p}\rightarrow p_i = m w_i</math>,其中 <math>w_i</math> 为粒子速度矢量。定义某函数 <math>A(p_i)</math>,使得其唯一的自变量为动量 <math>p_i</math>(碰撞中动量守恒)。假设力 <math>F_i</math> 为位置的函数,且对于 <math>p_i\rightarrow\pm \infty</math>,<math>f</math> 为 0。对玻尔兹曼方程两边同乘 <math>A</math> ,并对动量积分,使用分部积分法可得四项。如下所示: |
| | | |
| :<math>\int A \frac{\partial f}{\partial t} \,d^3p = \frac{\partial }{\partial t} (n \langle A \rangle),</math> | | :<math>\int A \frac{\partial f}{\partial t} \,d^3p = \frac{\partial }{\partial t} (n \langle A \rangle),</math> |
第262行: |
第262行: |
| | | |
| where <math>P_{ij} = \rho \langle (w_i-V_i) (w_j-V_j) \rangle</math> is the pressure tensor (the viscous stress tensor plus the hydrostatic pressure). | | where <math>P_{ij} = \rho \langle (w_i-V_i) (w_j-V_j) \rangle</math> is the pressure tensor (the viscous stress tensor plus the hydrostatic pressure). |
| + | |
| <math>P_{ij}=\rho\langle (w_i-V_i) (w_j-V_j) \rangle</math> 为压强张量(粘性应力张量加上流体静力学压强)。 | | <math>P_{ij}=\rho\langle (w_i-V_i) (w_j-V_j) \rangle</math> 为压强张量(粘性应力张量加上流体静力学压强)。 |
| | | |
| Letting <math>A =\frac{p_i p_i}{2m}</math>, the kinetic energy of the particle, the integrated Boltzmann equation becomes the conservation of energy equation:<ref name="dG1984" />{{rp|pp 19,169}} | | Letting <math>A =\frac{p_i p_i}{2m}</math>, the kinetic energy of the particle, the integrated Boltzmann equation becomes the conservation of energy equation:<ref name="dG1984" />{{rp|pp 19,169}} |
| + | |
| 令 <math>A =\frac{p_i p_i}{2m}</math>,即粒子动能,积分后的玻尔兹曼方程化为能量守恒方程<ref name="dG1984" />{{rp|pp 19,169}}: | | 令 <math>A =\frac{p_i p_i}{2m}</math>,即粒子动能,积分后的玻尔兹曼方程化为能量守恒方程<ref name="dG1984" />{{rp|pp 19,169}}: |
| | | |
第270行: |
第272行: |
| | | |
| where <math>u = \tfrac{1}{2} \rho \langle (w_i-V_i) (w_i-V_i) \rangle</math> is the kinetic thermal energy density, and <math>J_{qi} = \tfrac{1}{2} \rho \langle(w_i - V_i)(w_k - V_k)(w_k - V_k)\rangle</math> is the heat flux vector. | | where <math>u = \tfrac{1}{2} \rho \langle (w_i-V_i) (w_i-V_i) \rangle</math> is the kinetic thermal energy density, and <math>J_{qi} = \tfrac{1}{2} \rho \langle(w_i - V_i)(w_k - V_k)(w_k - V_k)\rangle</math> is the heat flux vector. |
− | <math>u=\tfrac{1}{2}\rho\langle (w_i-V_i) (w_i-V_i) \rangle</math> 为动力热能密度(kinetic thermal energy density),<math>J_{qi}=\tfrac{1}{2}\rho\langle (w_i-V_i)(w_k-V_k)(w_k-V_k)\rangle</math> 热通量矢量。 | + | |
| + | 其中<math>u=\tfrac{1}{2}\rho\langle (w_i-V_i) (w_i-V_i) \rangle</math> 为动力热能密度(kinetic thermal energy density),<math>J_{qi}=\tfrac{1}{2}\rho\langle (w_i-V_i)(w_k-V_k)(w_k-V_k)\rangle</math> 热通量矢量。 |
| | | |
| ===Hamiltonian mechanics 哈密顿力学=== | | ===Hamiltonian mechanics 哈密顿力学=== |