更改

添加988字节 、 2021年11月30日 (二) 11:12
第113行: 第113行:  
^{1/\beta})</math>|{{EquationRef|7}}}}
 
^{1/\beta})</math>|{{EquationRef|7}}}}
   −
 
+
where <math>j(x)</math> is the "scaling" function and <math>\beta</math> and <math>\delta</math> are two critical-point exponents [3-7].  Thus, from \eqref{eq:2} and \eqref{eq:7}, as the critical point is approached <math>(H\rightarrow 0</math> and <math>t\rightarrow 0)\ ,</math> <math>\mid H\mid</math> becomes a homogeneous function of <math>t</math> and <math>\mid M\mid
where <math>j(x)</math> is the "scaling" function and <math>\beta</math> and <math>\delta</math> are two critical-point exponents [3-7].  Thus, from \eqref{eq:2} and \eqref{eq:7}, as the critical point is approached <math>(H\rightarrow 0</math> and
+
^{1/\beta}</math> of degree <math>\beta \delta\ .</math>  The scaling function <math>j(x)</math> vanishes proportionally to <math>x+b</math> as <math>x</math> approaches <math>-b\ ,</math> with <math>b</math> a positive constant; it diverges proportionally to <math>x^{\beta(\delta-1)}</math> as <math>x\rightarrow \infty\ ;</math> and <math>j(0) = c\ ,</math> another positive constant (Fig. 1). Although \eqref{eq:7} is confined to the immediate neighborhood of the critical point <math>(t, M, H</math> all near 0), the scaling variable <math>x = t/\mid M\mid ^{1/\beta}</math> nevertheless traverses the infinite range <math>-b < x < \infty\ .</math>
<math>t\rightarrow 0)\ ,</math> <math>\mid H\mid</math> becomes a homogeneous function of <math>t</math> and <math>\mid M\mid
  −
^{1/\beta}</math> of degree <math>\beta \delta\ .</math>  The scaling function <math>j(x)</math> vanishes proportionally to <math>x+b</math> as <math>x</math> approaches <math>-b\ ,</math> with <math>b</math> a positive constant; it diverges proportionally to <math>x^{\beta(\delta-1)}</math> as <math>x\rightarrow \infty\ ;</math> and <math>j(0) = c\ ,</math> another positive constant (Fig. 1). Although \eqref{eq:7} is confined to the immediate neighborhood
  −
of the critical point <math>(t, M, H</math> all near 0), the scaling
  −
variable <math>x = t/\mid M\mid ^{1/\beta}</math> nevertheless
  −
traverses the infinite range <math>-b < x < \infty\ .</math>
      
[[Image:scaling_laws_widom_nocaption_Fig1.png|thumb|300px|right|Scaling function  
 
[[Image:scaling_laws_widom_nocaption_Fig1.png|thumb|300px|right|Scaling function  
第167行: 第162行:  
{{NumBlk|:|<math>h(r,t)=r^{-(d-2+\eta)}G(r/\xi).  </math>|{{EquationRef|10}}}}
 
{{NumBlk|:|<math>h(r,t)=r^{-(d-2+\eta)}G(r/\xi).  </math>|{{EquationRef|10}}}}
   −
 
+
Here <math>d</math> is the dimensionality of space, <math>\eta</math> is another critical-point exponent, and <math>\xi</math> is the correlation length (exponential
Here <math>d</math> is the
  −
dimensionality of space, <math>\eta</math> is another critical-point
  −
exponent, and <math>\xi</math> is the correlation length (exponential
   
decay length of the correlations), which diverges as  
 
decay length of the correlations), which diverges as  
    
:<math>\label{eq:11}
 
:<math>\label{eq:11}
 
\xi\sim \mid t\mid ^{-\nu} </math>
 
\xi\sim \mid t\mid ^{-\nu} </math>
+
{{NumBlk|:|<math>\xi\sim \mid t\mid ^{-\nu}</math>|{{EquationRef|11}}}}
 +
 
   −
as the critical point is
+
as the critical point is approached, with <math>\nu</math> still another critical-point exponent. Thus, <math>h(r,t)</math> (with <math>H=0)</math> is a homogeneous function of <math>r</math> and <math>\mid t\mid
approached, with <math>\nu</math> still another critical-point
+
^{-\nu}</math> of degree <math>-(d-2+\eta)\ .</math>  The scaling function <math>G(x)</math> has the properties (to within constant
exponent. Thus, <math>h(r,t)</math> (with <math>H=0)</math> is a
  −
homogeneous function of <math>r</math> and <math>\mid t\mid
  −
^{-\nu}</math> of degree <math>-(d-2+\eta)\ .</math>  The scaling
  −
function <math>G(x)</math> has the properties (to within constant
   
factors of proportionality),  
 
factors of proportionality),  
   第189行: 第178行:  
\begin{array} {lc }x^{\frac{1}{2}(d-3)+\eta} e^{-x}, & x\rightarrow
 
\begin{array} {lc }x^{\frac{1}{2}(d-3)+\eta} e^{-x}, & x\rightarrow
 
\infty \\ 1, & x\rightarrow 0 . \end{array} \right.  </math>
 
\infty \\ 1, & x\rightarrow 0 . \end{array} \right.  </math>
+
{{NumBlk|:|<math>G(x) \sim \left\{
 +
\begin{array} {lc }x^{\frac{1}{2}(d-3)+\eta} e^{-x}, & x\rightarrow
 +
\infty \\ 1, & x\rightarrow 0 . \end{array} \right. </math>|{{EquationRef|12}}}}
 +
 
   −
Thus, as
+
Thus, as <math>r\rightarrow \infty</math> in any fixed thermodynamic state (fixed t) near the critical point, <math>h</math> decays with increasing <math>r</math> proportionally to <math>r^{-\frac{1}{2}(d-1)}e^{-r/\xi}\ ,</math> as in the [https://en.wikipedia.org/wiki/Ornstein%E2%80%93Zernike_equation?oldformat=true '''Ornstein-Zernike theory'''].  If, instead, the critical point is approached <math>(\xi \rightarrow \infty)</math> with a fixed, large <math>r\ ,</math> we have <math>h(r)</math> decaying with <math>r</math> only as an inverse power, <math>r^{-(d-2+\eta)}\ ,</math> which corrects the <math>r^{-(d-2)}</math> that appears in the Ornstein-Zernike theory in that limit. The scaling law \eqref{eq:10} with scaling function <math>G(x)</math> interpolates between these extremes.
<math>r\rightarrow \infty</math> in any fixed thermodynamic state
  −
(fixed t) near the critical point, <math>h</math> decays with
  −
increasing <math>r</math> proportionally to
  −
<math>r^{-\frac{1}{2}(d-1)}e^{-r/\xi}\ ,</math> as in the
  −
[[Ornstein-Zernike theory]].  If, instead, the critical point is
  −
approached <math>(\xi \rightarrow \infty)</math> with a fixed, large
  −
<math>r\ ,</math> we have <math>h(r)</math> decaying with <math>r</math>
  −
only as an inverse power, <math>r^{-(d-2+\eta)}\ ,</math> which corrects
  −
the <math>r^{-(d-2)}</math> that appears in the Ornstein-Zernike
  −
theory in that limit. The scaling law \eqref{eq:10} with scaling
  −
function <math>G(x)</math> interpolates between these extremes.
     −
In the language of fluids, with <math>\rho</math> the number density
+
In the language of fluids, with <math>\rho</math> the number density and <math>\chi</math> the isothermal compressibility, we have as an exact relation in the Ornstein-Zernike theory  
and <math>\chi</math> the isothermal compressibility, we have as an
  −
exact relation in the Ornstein-Zernike theory  
      
:<math>\label{eq:13}
 
:<math>\label{eq:13}
 
\rho kT
 
\rho kT
 
\chi =1+\rho \int h(r) \rm{d}\tau </math>
 
\chi =1+\rho \int h(r) \rm{d}\tau </math>
+
{{NumBlk|:|<math>\rho kT
 +
\chi =1+\rho \int h(r) \rm{d}\tau</math>|{{EquationRef|13}}}}
 +
 
   −
with <math>k</math>
+
with <math>k</math> Boltzmann's constant and where the integral is over all space with <math>\rm{d} \tau</math> the element of volume. The same relation holds in the ferromagnets with <math>\chi</math> then the magnetic susceptibility and with the deviation of <math>\rho</math> from the critical density <math>\rho_c</math> then the magnetization <math>M\ .</math>  At the critical point <math>\chi</math> is infinite and correspondingly the integral diverges because the decay length <math>\xi</math> is then also infinite.  The density <math>\rho</math> is there just the finite positive constant <math>\rho_c</math> and <math>T</math> the finite <math>T_c\ .</math>  Then from the scaling law \eqref{eq:10}, because of the homogeneity of <math>h(r,t)</math> and because the main contribution to the diverging integral comes from large <math>r\ ,</math> where \eqref{eq:10} holds, it follows that <math>\chi</math> diverges proportionally to <math>\xi^{2-\eta} \int
Boltzmann's constant and where the integral is over all space with
+
G(x)x^{d-1}\rm{d}</math><math>x\ .</math>  But the integral is now finite because, by \eqref{eq:12}, <math>G(x)</math> vanishes
<math>\rm{d} \tau</math> the element of volume. The same relation holds in
+
exponentially rapidly as <math>x\rightarrow \infty\ .</math>  Thus, from \eqref{eq:11} and from the earlier <math>\chi \sim \mid
the ferromagnets with <math>\chi</math> then the magnetic
  −
susceptibility and with the deviation of <math>\rho</math> from the
  −
critical density <math>\rho_c</math> then the magnetization
  −
<math>M\ .</math>  At the critical point <math>\chi</math> is infinite
  −
and correspondingly the integral diverges because the decay length
  −
<math>\xi</math> is then also infinite.  The density <math>\rho</math>
  −
is there just the finite positive constant <math>\rho_c</math> and
  −
<math>T</math> the finite <math>T_c\ .</math>  Then from the scaling law
  −
\eqref{eq:10}, because of the homogeneity of <math>h(r,t)</math>
  −
and because the main contribution to the diverging integral comes from
  −
large <math>r\ ,</math> where \eqref{eq:10} holds, it follows that
  −
<math>\chi</math> diverges proportionally to <math>\xi^{2-\eta} \int
  −
G(x)x^{d-1}\rm{d}</math><math>x\ .</math>  But the integral is now
  −
finite because, by \eqref{eq:12}, <math>G(x)</math> vanishes
  −
exponentially rapidly as <math>x\rightarrow \infty\ .</math>  Thus, from
  −
\eqref{eq:11} and from the earlier <math>\chi \sim \mid
   
t\mid^{-\gamma}</math> we have the scaling law [15]
 
t\mid^{-\gamma}</math> we have the scaling law [15]
    
:<math>\label{eq:14}
 
:<math>\label{eq:14}
 
(2-\eta)\nu = \gamma .  </math>
 
(2-\eta)\nu = \gamma .  </math>
 
+
:
 
+
{{NumBlk|:|<math>(2-\eta)\nu = \gamma . </math>|{{EquationRef|14}}}}The surface tension <math>\sigma</math> in liquid-vapor equilibrium, or the analogous excess free energy per unit area of the interface between coexisting, oppositely magnetized domains, vanishes at the critical point (Curie point) proportionally to <math>(-t)^\mu</math> with <math>\mu</math> another critical-point exponent. The interfacial region has a thickness of the order of the correlation
 
+
length <math>\xi</math> so <math>\sigma/\xi</math> is the free energy per unit volume associated with the interfacial region. That is in its magnitude and in its singular critical-point behavior the same free energy per unit volume as in the bulk phases, from which the heat capacity follows by two differentiations with respect to the temperature. Thus, <math>\sigma/\xi</math> vanishes proportionally to <math>(-t)^{2-\alpha}\ ;</math> so, together with \eqref{eq:9},
The surface tension <math>\sigma</math> in liquid-vapor equilibrium,
  −
or the analogous excess free energy per unit area of the interface
  −
between coexisting, oppositely magnetized domains, vanishes at the
  −
critical point (Curie point) proportionally to <math>(-t)^\mu</math>
  −
with <math>\mu</math> another critical-point exponent. The
  −
interfacial region has a thickness of the order of the correlation
  −
length <math>\xi</math> so <math>\sigma/\xi</math> is the free energy
  −
per unit volume associated with the interfacial region. That is in
  −
its magnitude and in its singular critical-point behavior the same
  −
free energy per unit volume as in the bulk phases, from which the heat
  −
capacity follows by two differentiations with respect to the
  −
temperature. Thus, <math>\sigma/\xi</math> vanishes proportionally to
  −
<math>(-t)^{2-\alpha}\ ;</math> so, together with \eqref{eq:9},
      
:<math>\label{eq:15}
 
:<math>\label{eq:15}
 
\mu + \nu = 2-\alpha= \gamma +2\beta, </math>
 
\mu + \nu = 2-\alpha= \gamma +2\beta, </math>
+
{{NumBlk|:|<math>\mu + \nu = 2-\alpha= \gamma +2\beta,</math>|{{EquationRef|15}}}}
 +
 
   −
another
+
another scaling relation [16,17].
scaling relation [16,17].
      
== Exponents and space dimension ==
 
== Exponents and space dimension ==
第282行: 第234行:  
:<math>\label{eq:16}
 
:<math>\label{eq:16}
 
\mu = (d-1)\nu, </math>
 
\mu = (d-1)\nu, </math>
+
{{NumBlk|:|<math>\mu = (d-1)\nu,</math>|{{EquationRef|16}}}}
 +
 
   −
a hyperscaling relation [16].
+
a hyperscaling relation [16]. With \eqref{eq:15} we then have also [16]
With \eqref{eq:15} we then have also [16]
      
:<math>\label{eq:17}
 
:<math>\label{eq:17}
 
d\nu = 2-\alpha = \gamma+2\beta, </math>
 
d\nu = 2-\alpha = \gamma+2\beta, </math>
+
{{NumBlk|:|<math>d\nu = 2-\alpha = \gamma+2\beta,</math>|{{EquationRef|17}}}}
   −
which, with
+
 
\eqref{eq:8} and \eqref{eq:14}, yields also [18]
+
which, with \eqref{eq:8} and \eqref{eq:14}, yields also [18]
    
:<math>\label{eq:18}
 
:<math>\label{eq:18}
 
2-\eta = \frac{\delta -1}{\delta +1} d.  </math>
 
2-\eta = \frac{\delta -1}{\delta +1} d.  </math>
 +
{{NumBlk|:|<math>2-\eta = \frac{\delta -1}{\delta +1} d. </math>|{{EquationRef|18}}}}
       +
Unlike the scaling laws \eqref{eq:8}, \eqref{eq:9}, \eqref{eq:14}, and \eqref{eq:15}, which make no explicit reference to the dimensionality, the <math>d</math>-dependent exponent relations \eqref{eq:16}-\eqref{eq:18} hold only for <math>d<4\ .</math>  At <math>d=4</math> the exponents assume the values they have in the mean-field theories but logarithmic factors are then appended to the simple power laws. Then for <math>d>4\ ,</math> the terms in the thermodynamic functions and correlation-function parameters that have as their exponents those given by the mean-field theories are the leading terms. The terms with the original <math>d</math>-dependent exponents, which for <math>d<4</math> were the leading terms, have been overtaken, and, while still present, are now sub-dominant.
   −
Unlike the scaling laws \eqref{eq:8}, \eqref{eq:9},
+
This progression in critical-point properties from <math>d<4</math> to <math>d=4</math> to <math>d>4</math> is seen clearly in the phase transition that occurs in the analytically soluble model of the ideal Bose gas. There is no phase transition or critical point in it for <math>d \le 2\ .</math>  When <math>d>2</math> the chemical potential
\eqref{eq:14}, and \eqref{eq:15}, which make no explicit
+
<math>\mu</math> (not to be confused with the surface-tension exponent <math>\mu</math>) vanishes identically for all <math>\rho \Lambda ^d
reference to the dimensionality, the <math>d</math>-dependent exponent
+
\ge \zeta (d/2)\ ,</math> where <math>\rho</math> is the density,   <math>\Lambda</math> is the thermal de Broglie wavelength <math>h/\sqrt {2\pi mkT}</math> with <math>h</math> Planck's constant and <math>m</math> the mass of the atom, and <math>\zeta (s)</math> is the Riemann zeta function.  As <math>\rho \Lambda^d \rightarrow
relations \eqref{eq:16}-\eqref{eq:18} hold only for
+
\zeta(d/2)</math> from below, <math>\mu</math> vanishes through a range of negative values. As <math>\mu \rightarrow 0-\ ,</math> the difference <math>\zeta(d/2)-\rho \Lambda^d</math> vanishes (to within
<math>d<4\ .</math>  At <math>d=4</math> the exponents assume the values
  −
they have in the mean-field theories but logarithmic factors are then
  −
appended to the simple power laws.  Then for <math>d>4\ ,</math> the
  −
terms in the thermodynamic functions and correlation-function
  −
parameters that have as their exponents those given by the mean-field
  −
theories are the leading terms.  The terms with the original
  −
<math>d</math>-dependent exponents, which for <math>d<4</math> were
  −
the leading terms, have been overtaken, and, while still present, are
  −
now sub-dominant.
  −
 
  −
This progression in critical-point properties from <math>d<4</math> to
  −
<math>d=4</math> to <math>d>4</math> is seen clearly in the phase
  −
transition that occurs in the analytically soluble model of the ideal
  −
Bose gas. There is no phase transition or critical point in it for
  −
<math>d \le 2\ .</math>  When <math>d>2</math> the chemical potential
  −
<math>\mu</math> (not to be confused with the surface-tension exponent
  −
<math>\mu</math>) vanishes identically for all <math>\rho \Lambda ^d
  −
\ge \zeta (d/2)\ ,</math> where <math>\rho</math> is the density,
  −
<math>\Lambda</math> is the thermal de Broglie wavelength
  −
<math>h/\sqrt {2\pi mkT}</math> with <math>h</math> Planck's constant
  −
and <math>m</math> the mass of the atom, and <math>\zeta (s)</math> is
  −
the Riemann zeta function.  As <math>\rho \Lambda^d \rightarrow
  −
\zeta(d/2)</math> from below, <math>\mu</math> vanishes through a
  −
range of negative values. As <math>\mu \rightarrow 0-\ ,</math> the
  −
difference <math>\zeta(d/2)-\rho \Lambda^d</math> vanishes (to within
   
positive proportionality factors) as  
 
positive proportionality factors) as  
   第335行: 第264行:  
\\ \mu \ln(-\mu/kT), & d=4 \\ \\ -\mu , & d>4 . \end{array}\right.
 
\\ \mu \ln(-\mu/kT), & d=4 \\ \\ -\mu , & d>4 . \end{array}\right.
 
</math>
 
</math>
+
{{NumBlk|1=:|2=<math>\zeta(d/2)-\rho
 +
\Lambda^d \sim \left\{ \begin{array} {lc }(-\mu)^{d/2-1}, & 2<d<4 \\
 +
\\ \mu \ln(-\mu/kT), & d=4 \\ \\ -\mu , & d>4 . \end{array}\right. </math>|3={{EquationRef|19}}}}
 +
 
   −
When <math>2<d<4</math> the mean-field <math>-\mu</math> is
+
When <math>2<d<4</math> the mean-field <math>-\mu</math> is still present but is dominated by <math>(-\mu)^{d/2-1}\ ;</math> when
still present but is dominated by <math>(-\mu)^{d/2-1}\ ;</math> when
+
<math>d>4</math> the singular <math>(-\mu)^{d/2-1}</math> is still present but is dominated by the mean-field <math>-\mu\ .</math>
<math>d>4</math> the singular <math>(-\mu)^{d/2-1}</math> is still
  −
present but is dominated by the mean-field <math>-\mu\ .</math>
        −
This behavior is reflected again in the [[renormalization-group theory]]
+
This behavior is reflected again in the [[renormalization-group theory]] [19-21].  In the simplest cases there are two competing fixed points for the renormalization-group flows, one of them associated with <math>d</math>-dependent  
[19-21].  In the simplest cases there are two competing fixed points for  
  −
the renormalization-group flows, one of them associated with <math>d</math>-dependent  
   
exponents that satisfy both the <math>d</math>-independent scaling relations and
 
exponents that satisfy both the <math>d</math>-independent scaling relations and
 
the hyperscaling relations, the other with the <math>d</math>-independent  
 
the hyperscaling relations, the other with the <math>d</math>-independent  
596

个编辑